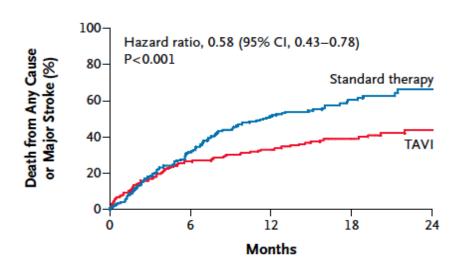


An All-comers Randomized Clinical Trial Comparing Transcatheter with Surgical Aortic Valve Replacement in Patients with Aortic Valve Stenosis

On behalf of NOTION investigators: Hans Gustav Hørsted Thyregod, MD

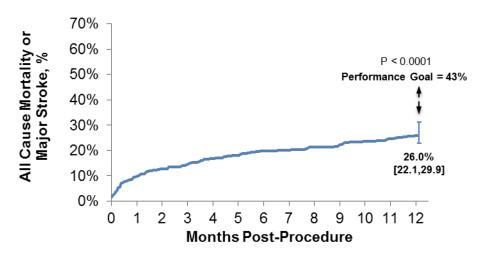
Dep. of Cardiothoracic Surgery

Copenhagen University Hospital, Denmark



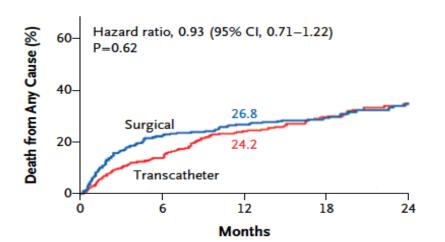
Funding

The Danish Heart Foundation

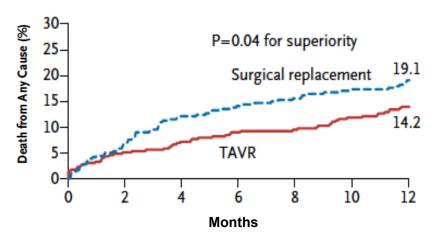

TAVR in Extreme-Risk Patients

PARTNER TRIAL

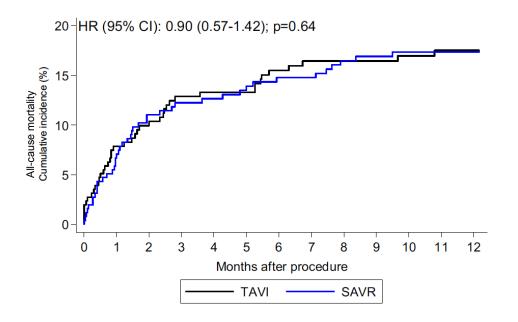
Leon MB et al, NEJM 2010


US COREVALVE EXTREME RISK STUDY

Popma JJ et al, JACC 2014


TAVR in High-Risk Patients

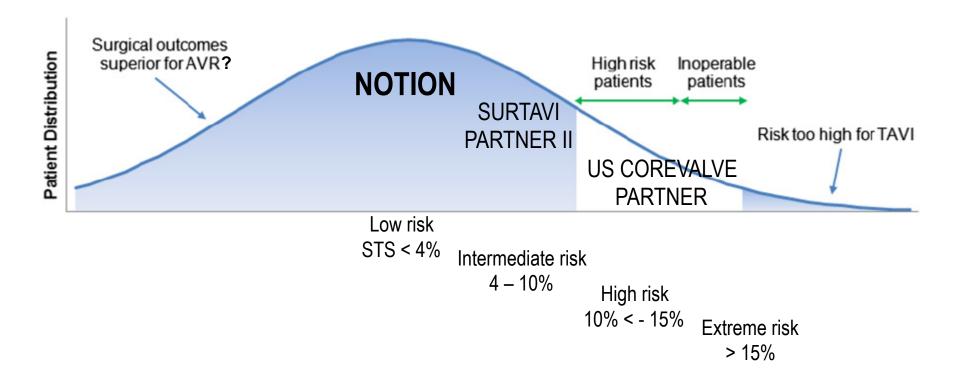
PARTNER TRIAL


Smith CR et al. NEJM 2011

US COREVALVE HIGH RISK STUDY

Adams DH et al, NEJM 2014

TAVR in Intermediate-Risk Patients



Propensity-score matched study Piazza et al, JACC 2014

Operative Risk and TAVR vs. SAVR Trials

Nordic Aortic Valve Intervention (NOTION) Trial

Objective:	Compare TAVR vs. SAVR in patients ≥ 70 years eligible for surgery (all-comers population)
Primary outcome:	Composite rate of death from any cause, stroke or myocardial infarction at 1 year (VARC II-defined)
Secondary outcomes:	Safety and efficacy (NYHA), echocardiographic outcomes (VARC II-defined)
Design:	Prospective, multicenter, non-blinded, randomized trial
Enrollment period:	December 2009 - April 2013

Participating Centers

Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

Sahlgrenska University Hospital, Gothenburg, Sweden

Odense University Hospital, Odense, Denmark

Trial Investigators and CEC

Principal Investigators:

Lars Søndergaard

Daniel Andreas Steinbrüchel

Co-investigators:

Hans Gustav Hørsted Thyregod

Peter Skov Olsen

Nikolaj Ihlemann

Olaf Walter Franzen

Thomas Engstrøm

Peter Bo Hansen

Lars Willy Andersen

Henrik Nissen

Bo Juel Kjeldsen

Petur Petursson

Clinical Events Committee:

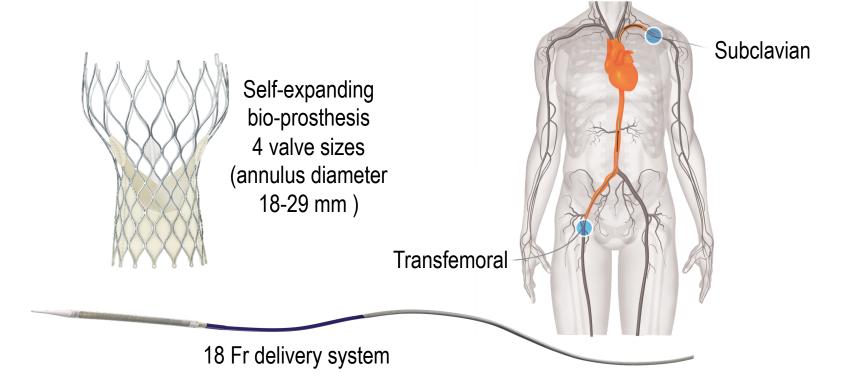
Kristian Thygesen (chair), cardiologist

Bo Norrving, neurologist

Torben Schroeder, vascular surgeon

Enrollment Criteria

Main inclusion criteria:


- 70 years or older
- Severe aortic valve stenosis on echocardiogram
- Expected to live more than 1 year
- Anatomical suitable for both procedures

Main exclusion criteria:

- Severe coronary artery disease
- Severe other heart valve disease
- Prior heart surgery
- Indication for acute treatment
- Recent stroke or myocardial infarction
- Severe pulmonary or renal failure

Device and Access Routes

Sample Size Determination

Alternative hypothesis: TAVR is superior to SAVR regarding the composite rate of death from any cause, stroke or myocardial infarction after 1 year

Sample Size Determination:

1:1 treatment allocation

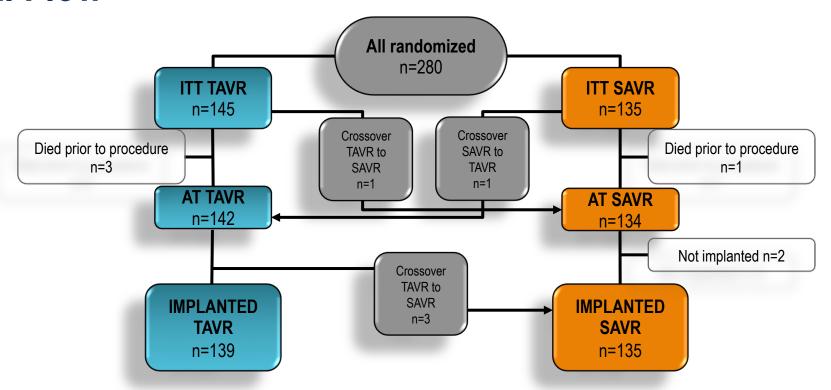
Two-sided alpha = 0.05

Power = 80%

Trial Size: 280 patients

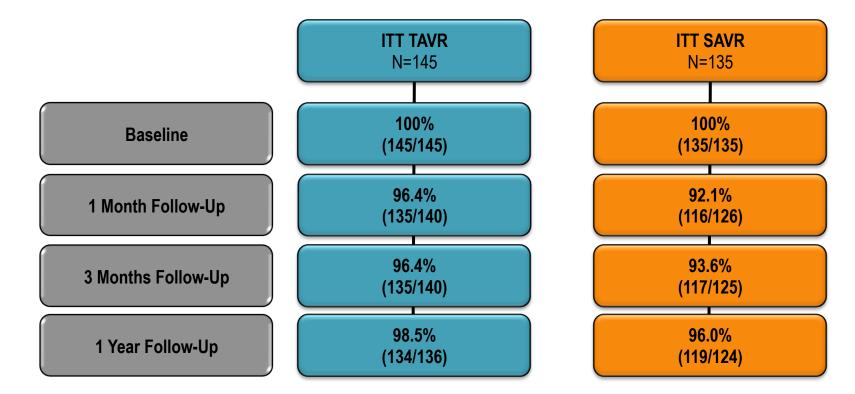
Expected rate_{SAVR} = 15%

Expected rate_{TAVR} = 5%


Primary Analysis Population

Intention-to-treat

All randomized patients.


Patients were analyzed according to randomization, regardless of whether a procedure was actually attempted or which prosthesis was actually implanted.

Trial Flow

Trial Compliance

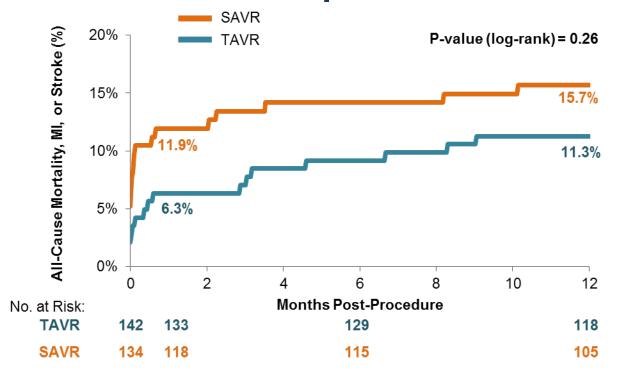
Baseline Characteristics

	TAVR	SAVR	
Characteristic, % or mean ± SD	n=145	n=135	p-value
Age (yrs)	79.2 ± 4.9	79.0 ± 4.7	0.71
Male	53.8	52.6	0.84
Society of Thoracic Surgeons (STS) Score	2.9 ± 1.6	3.1 ± 1.7	0.30
STS Score < 4%	83.4	80.0	0.46
Logistic EuroSCORE I	8.4 ± 4.0	8.9 ± 5.5	0.38
NYHA class III or IV	48.6	45.5	0.61

Baseline Characteristics, cont.

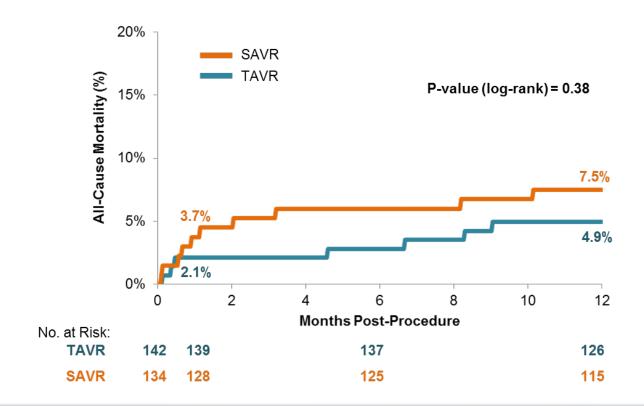
	TAVR	SAVR	
Characteristic, % or mean ± SD	n=145	n=135	p-value
Diabetes	17.9	20.7	0.55
Peripheral Vascular Disease	4.1	6.7	0.35
Prior Stroke	6.2	9.6	0.29
Chronic Obstructive Pulmonary Disease	11.7	11.9	0.97
Creatinine > 2 mg/dl	1.4	0.7	>0.99
Prior Myocardial Infarction	5.5	4.4	0.68
Prior Percutaneous Coronary Intervention	7.6	8.9	0.69

Primary Outcome*

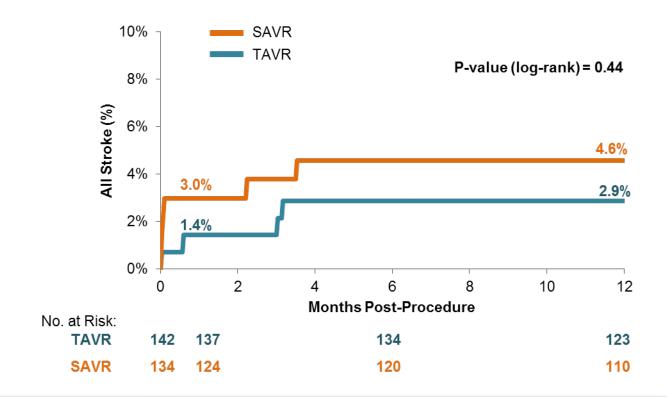

Composite rate of death from any cause, stroke or myocardial infarction 1 year after the procedure

TAVR 13.1% vs. SAVR 16.3%

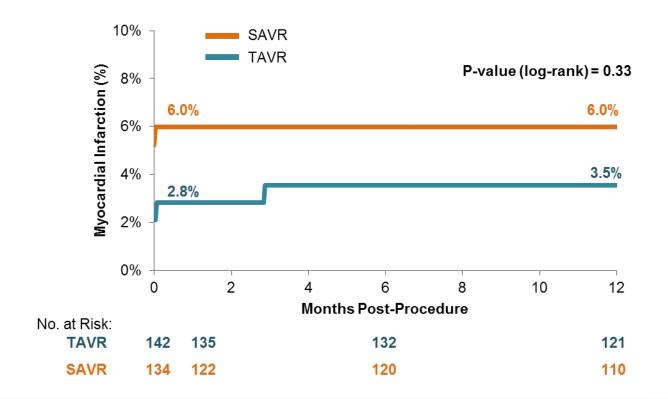
Absolute difference -3.2%; p=0.43 (for superiority)


*Intention-to-treat population

Death from Any Cause, Stroke or Myocardial Infarction at 1 Year in As-Treated Population



Death from Any Cause at 1 Year

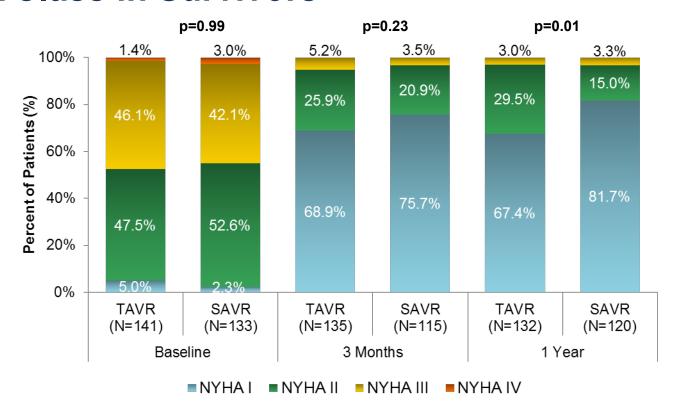


All Stroke at 1 Year

Myocardial Infarction at 1 Year

Secondary Outcomes at 30 Days

Outcome, %	TAVR n=142	SAVR n=134	p-value
Death, any cause	2.1	3.7	0.43
Death, cardiovascular	2.1	3.7	0.43
Bleeding, life-threatening+major	11.3	20.9	0.03
Cardiogenic shock	4.2	10.4	0.05
Vascular lesion, major	5.6	1.5	0.10
Acute kidney injury (stage II+III)	0.7	6.7	0.01
Stroke	1.4	3.0	0.37
TIA	1.4	0	0.17
Myocardial infarction	2.8	6.0	0.20
Atrial fibrillation	16.9	57.8	<0.001
Pacemaker	34.1	1.6	<0.001

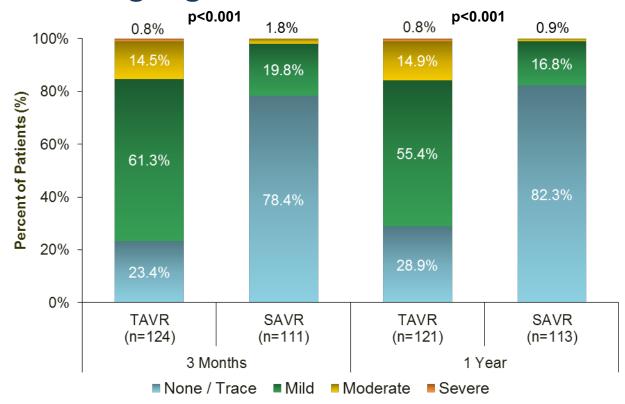


Secondary Outcomes at 1 Year

Outcome, %	TAVR n=142	SAVR n=134	p-value
Death, any cause	4.9	7.5	0.38
Death, cardiovascular	4.3	7.5	0.25
Stroke	2.9	4.6	0.44
TIA	2.1	1.6	0.71
Myocardial infarction	3.5	6.0	0.33
Atrial fibrillation	21.2	59.4	<0.001
Pacemaker	38.0	2.4	<0.001
Aortic valve re-intervention	0.0	0.0	na



NYHA Class in Survivors



Aortic Valve Performance

Aortic Valve Regurgitation

Conclusions

- The NOTION trial was the first all-comers trial to randomize low-risk patients to TAVR or SAVR
- TAVR was safe and effective, but not superior to SAVR regarding the composite rate of death from any cause, stroke or myocardial infarction after 1 year
- Procedural complications were different reflecting very different procedures
- Larger EOA and lesser gradients with TAVR prosthesis, but more regurgitation
- Long-term durability and morbidity data are required in lower risk patients