

Chamber Quantification and Evaluation of Systolic Function

Hector I. Michelena, FACC, FASE Professor of Medicine ACC Latin America June, 2017

Disclosures

No relevant financial disclosures

Overview

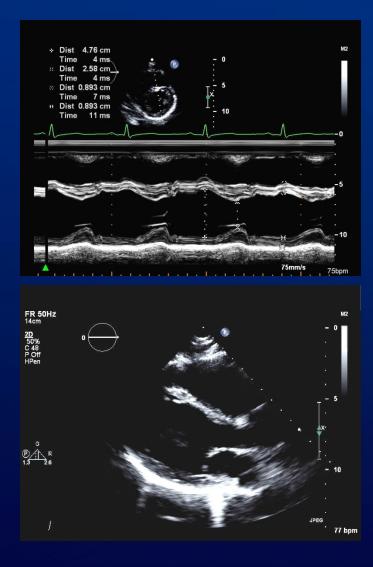
- Assessment of LV size
- Assessment of LV function
- Assessment of LV mass and geometry

GUIDELINES AND STANDARDS Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging Roberto M. Lang, MD, FASE, FESC, Luigi P. Badano, MD, PhD, FESC, Victor Mor-Avi, PhD, FASE, Jonathan Afilalo, MD, MSc, Anderson Armstrong, MD, MSc, Laura Ernande, MD, PhD, Frank A. Flachskampf, MD, FESC, Elyse Foster, MD, FASE, Steven A. Goldstein, MD, Tatiana Kuznetsova, MD, PhD, Patrizio Lancellotti, MD, PhD, FESC, Denisa Muraru, MD, PhD, Michael H. Picard, MD, FASE, Ernst R. Rietzschel, MD, PhD, Lawrence Rudski, MD, FASE, Kirk T. Spencer, MD, FASE, Wendy Tsang, MD, and Jens-Uwe Voigt, MD, PhD, FESC, Chicago, Illinois; Padua, Italy; Montreal, Quebec and Toronto, Ontario, Canada; Baltimore, Maryland; Créteil, France; Uppsala, Sweden; San Francisco, California; Washington, District of Columbia; Leuven, Liege, and Ghent, Belgium; Boston, Massachusetts

	Abnormal Aortic Val Reduced Systolic Oj								
	Aortic Reg	gurgitation			_				
Mitral Regurgitation									
Recommendations				COR	LOE	References			
ICD therapy is recommended for primary pro at least 40 d post-MI with LVEF ≤35% an who are expected to live >1 y*				d	A	355, 593			
CRT is indicated for patients who have LVEF ≥150 ms, and NYHA class II, III, or ambul				1	A (NYHA class III/IV) B (NYHA class II)	38, 78, 116, 594 595, 596			
	ICD therapy is recommended for primary prevention of SCD in selected patients with HF <i>r</i> EF at least 40 d post-MI with LVEF \leq 30% and NYHA class I symptoms while receiving GDMT, who are expected to live \geq 1 v*					362, 597, 598			
CRT can be useful for patients who have LV QRS ≥150 ms, and NYHA class III/ambula	А	78, 116, 594, 596							
CRT can be useful for patients who have LV 149 ms, and NYHA class II, III, or ambulat		BB with a QRS 120	to	lla	В	78, 116, 594–596, 599			
CRT can be useful in patients with AF and L ventricular pacing or otherwise meets CR allows near 100% ventricular pacing with	T criteria and b) AV nodal a		rol	lla	В	600–605			
CRT can be useful for patients on GDMT wh replacement device implantation with an			5	lla	C	155, 602, 606, 607			
An ICD is of uncertain benefit to prolong me nonsudden death such as frequent hospit				llb	В	608–611			
	CRT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS duration of 120 to 149 ms, and NYHA class III/ambulatory class IV on GDMT					596, 612			
	CRT may be considered for patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with QRS ≥150 ms, and NYHA class II symptoms on GDMT					595, 596			
	MCRT may be considered for patients who have LVEF ≤30%, ischemic etiology of HF, sinus rhythm, LBBB with QRS ≥150 ms, and NYHA class I symptoms on GDMT					595, 596			
CRT is not recommended for patients with N pattern with QRS <150 ms	CRT is not recommended for patients with NYHA class I or II symptoms and non-LBBB pattern with QRS <150 ms					595, 596, 612			
CRT is not indicated for patients whose com	orbidities and/or frailty limit		III: No Benefit	C	38				

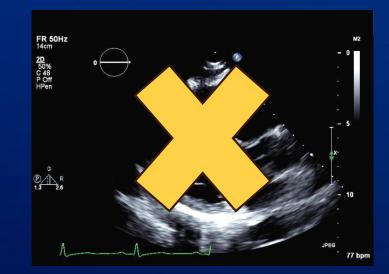
Nishimura RA et al. J Am Coll Cardiol. 2014;63(22):e57-e185. Yancy CW et al. J Am Coll Cardiol. 2013;62(16):e147-e239.

MAYO CLINIC

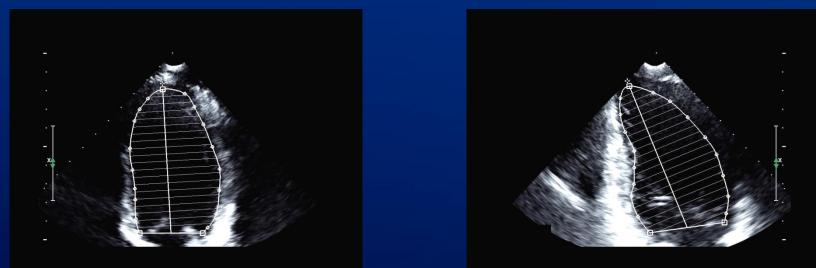

Assessment of LV Size

LV Dimensions

- Measure in PLAX view.
- Measure at or immediately below mitral valve leaflet tips.
- 2D images are preferred to avoid oblique sections of the ventricle


 Representative of LV size only in normally shaped ventricles

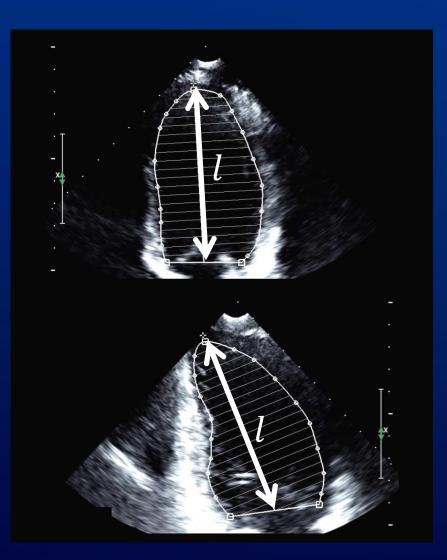
LV Volumes



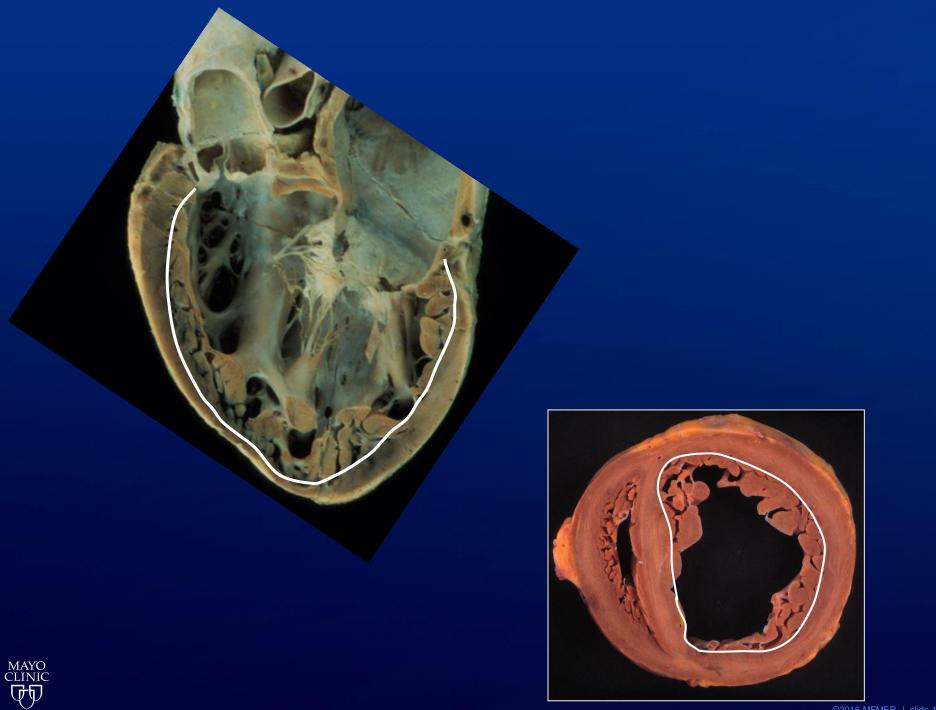
- Calculation of LV volumes from linear dimensions is <u>no</u> longer recommended.
- May be inaccurate due to assumption of a fixed geometric LV shape which does not apply in a variety of pathologies.

LV Volumes

- Should routinely be assessed by using the biplane method of disks summation technique.
- Should be measured from apical 4- and 2-chamber views.
- Avoiding foreshortening and aim to maximize LV areas

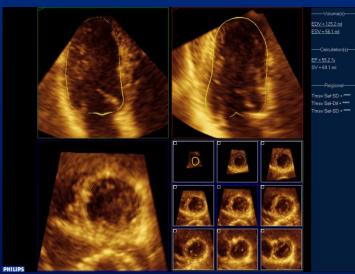


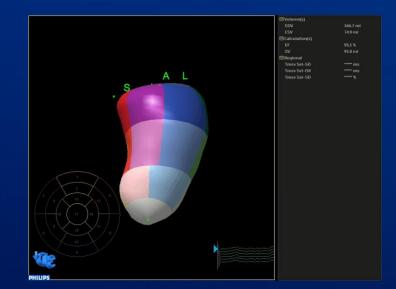
Tips


Avoiding foreshortening

 LV lengths should be comparable between views

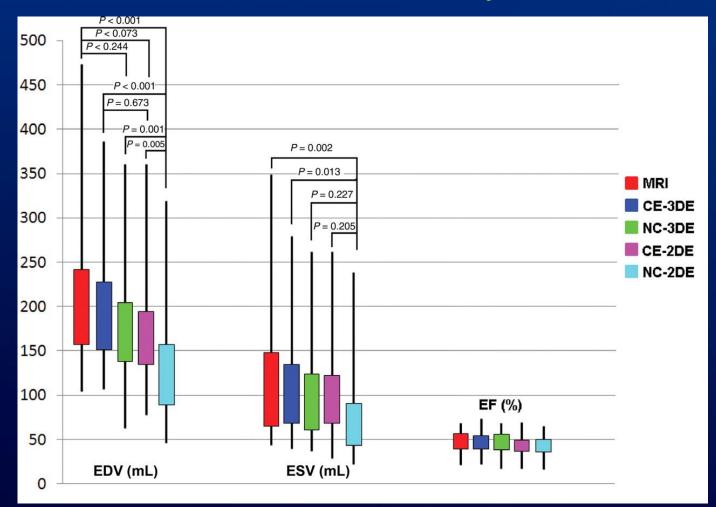
 Exclude trabeculations and papillary muscle


Contrast Echocardiography



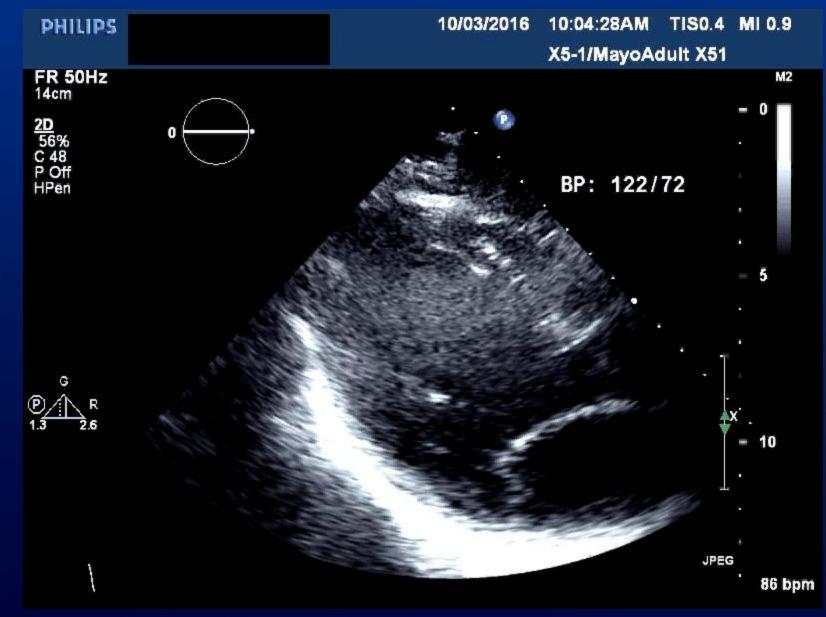
- Should be used when two or more contiguous LV segments are poorly visualized in apical views.
- Contrast-enhanced images may provide larger volumes than unenhanced images.

3D Echocardiography



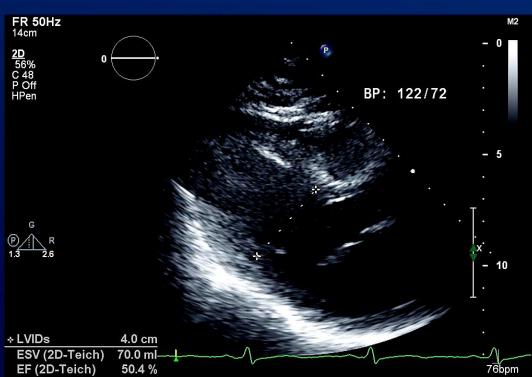
- More accurate and reproducible
- No geometrical assumptions
- 3D LV volume measurement is recommended when feasible depending on image quality.

Assessment of LV Volumes by Echo

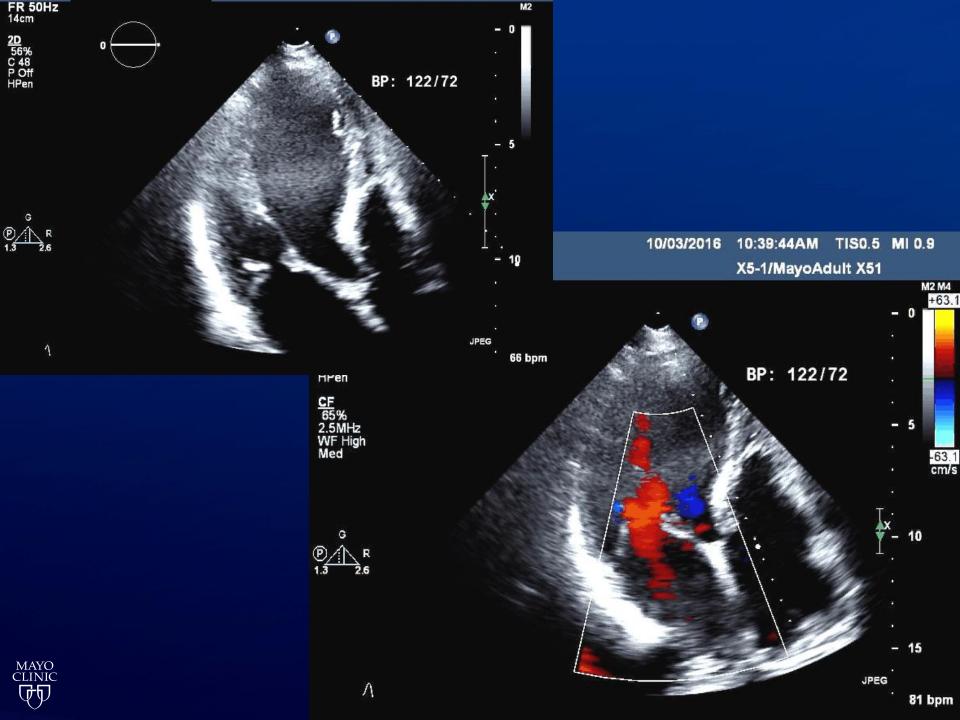

Jenkins C et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30:98-106.

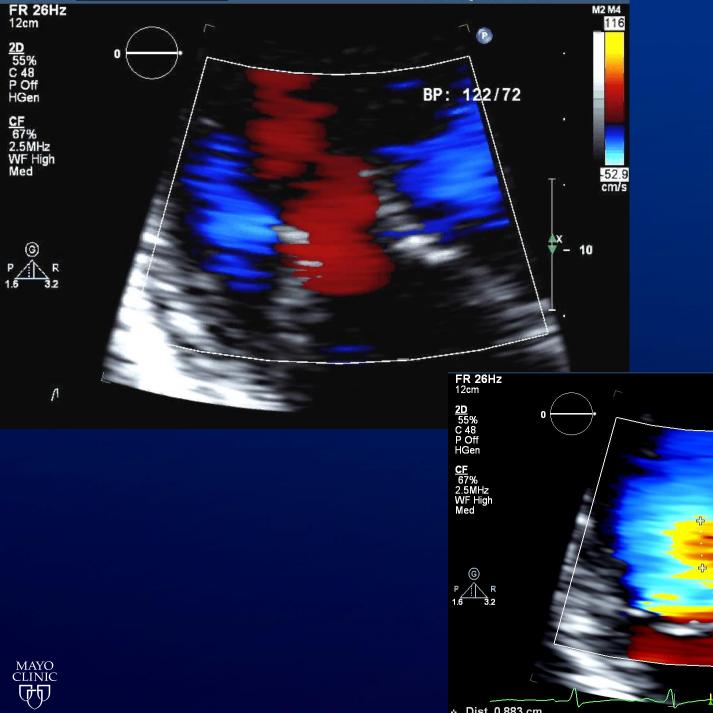
Interpretation of LV size

		Male				Female			
	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	
LV dimension									
LV diastolic diameter (cm)	4.2–5.8	5. 9- 6.3	6.4-6.8	>6.8	3.8–5.2	5.3–5.6	5.7–6.1	>6.1	
LV diastolic diameter/BSA (cm/m ²)	2.2–3.0	3.1–3.3	3.4–3.6	>3.6	2.3-3.1	3.2-3.4	3.5–3.7	>3.7	
LV systolic diameter (cm)	2.5-4.0	4.1-4.3	4.4-4.5	>4.5	2.2-3.5	3.6-3.8	3.9-4.1	>4.1	
LV systolic diameter/BSA (cm/m ²)	1.3-2.1	2.2-2.3	2.4-2.5	>2.5	1.3-2.1	2.2-2.3	2.4-2.6	>2.6	
LV volume									
LV diastolic volume (mL)	62–150	151–174	175–200	>200	46–106	107–120	121–130	>130	
LV diastolic volume/BSA (mL/m ²)	34–74	75–89	90–100	>100	29-61	62–70	71–80	>80	
LV systolic volume (mL)	2161	62-73	74–85	>85	14–42	43–55	56-67	>67	
LV systolic volume/BSA (mL/m ²)	11–31	32–38	39–45	>45	8–24	25–32	33–40	>40	



Lang RM et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.







		Male				Female			
	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	
LV dimension									
LV diastolic diameter (cm)	4.2–5.8	5.9-6.3	6.4-6.8	>6.8	3.8-5.2	5.3-5.6	5.7-6.1	>6.1	
LV diastolic diameter/BSA (cm/m ²)	2.2-3.0	3.1-3.3	3.4-3.6	>3.6	2.3-3.1	3.2-3.4	3.5-3.7	>3.7	
LV systolic diameter (cm)	2.5-4.0	4.1-4.3	4.4-4.5	>4.5	2.2-3.5	3.6-3.8	3.9-4.1	>4.1	
LV systolic diameter/BSA (cm/m ²)	1.3-2.1	2.2-2.3	2.4-2.5	>2.5	1.3-2.1	2.2-2.3	2.4-2.6	>2.6	
LV volume									
LV diastolic volume (mL)	62–150	151–174	175–200	>200	46-106	107-120	121-130	>130	
LV diastolic volume/BSA (mL/m ²)	34–74	75–89	90–100	>100	29-61	62-70	71–80	>80	
LV systolic volume (mL)	21-61	62-73	74–85	>85	14-42	43-55	56-67	>67	
LV systolic volume/BSA (mL/m ²)	11–31	32–38	39–45	>45	8–24	25–32	33–40	>40	

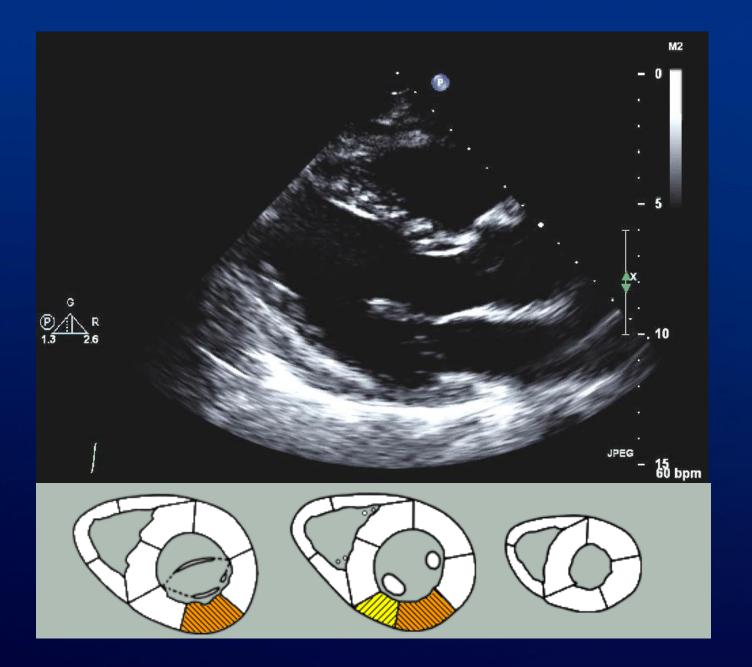
Rvol MR 105 cc/beat 2D LVEDD 54 mm 2D LVESD 40 mm Volumetric LVEF 54% LA index 75 cc/m2 Biplane LV EDD Vol 225 cc Biplane LV EDD Vol/index 137 cc/m2

Assessment of LV Function

Methods

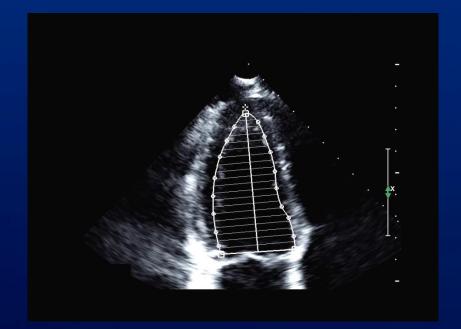
- Fractional Shortening
- Ejection Fraction
- Stroke Volume
- Global Longitudinal Strain

Regional Wall Motion Analysis

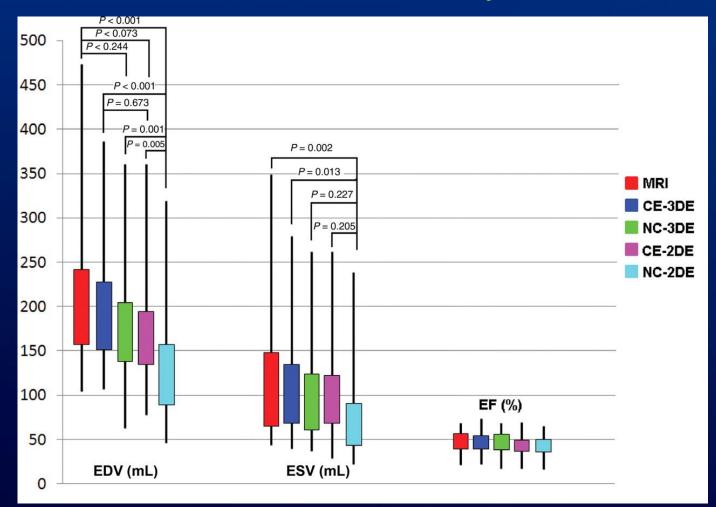


LVEF: Modified Quinones Method

IVEE -	$\frac{LVEDD^2 - LVESD^2}{LVESD^2}$
$LVEF_{calc} =$	LVEDD ²


$LVEF_{calc} =$	$\frac{LVEDD^2 - LVESD^2}{LVEDD^2}$	ded
EF = LVEL	$IVEDD^{2} - IVESD^{2}$ $IVEDD^{2}$ $F_{calc} + [(1 - IVECONCCUP)]$ $F_{calc} + [(1 - IVECONCCUP)]$ $F_{calc} + [(1 - IVECONCUP)]$	
Where ar	S (%ΔL) is :	
> i N	O <i>mal</i>	
> 5	Hypokinetic	
>0	Akinetic	
>-5	Dyskinetic	
>-10	Aneurvsmal	

LVEF: Modified Simpson's Biplane



$LVEF = \frac{LVEDV - LVESV}{LVEDV} \times 100$

Assessment of LV Volumes by Echo

Jenkins C et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30:98-106.

LV Ejection Fraction

	Male	Female			
Normal	52 – 72 %	54 – 74 %			
Mildly Abnormal	41 – 51 %	41 – 51 %			
Moderately Abnormal	30 – 40 %	30 – 40 %			
Severely Abnormal	< 30 %	< 30 %			

Lang RM et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.

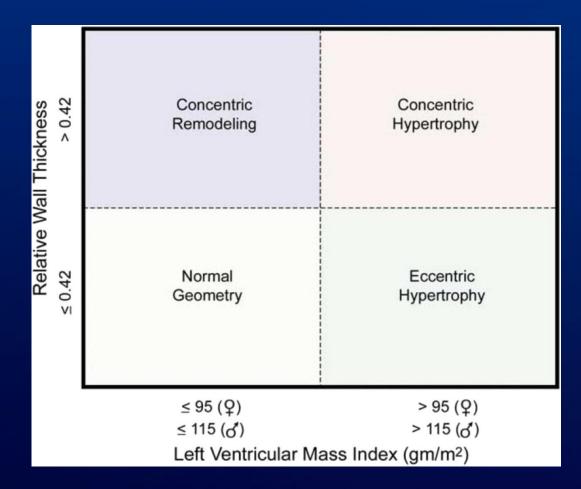
Assessment of LV Mass and Geometry

 64 year old white female presents with a 16 year history of hypertension, she initially was managed with diuretics alone but has been managed with two drug therapy with ACE inhibitor and diuretics for the last 7 years.

- She describes NYHA class II DOE, no orthopnea or PND. Denies chest pain or other cardiac symptoms.
- Exam
 - 165cm 82 Kg
 - BP 137/81 HR 67
 - Lungs Clear
 - CV soft S1 paradoxically split S2, 1/6 holosystolic blowing murmur at apex
 - No Edema

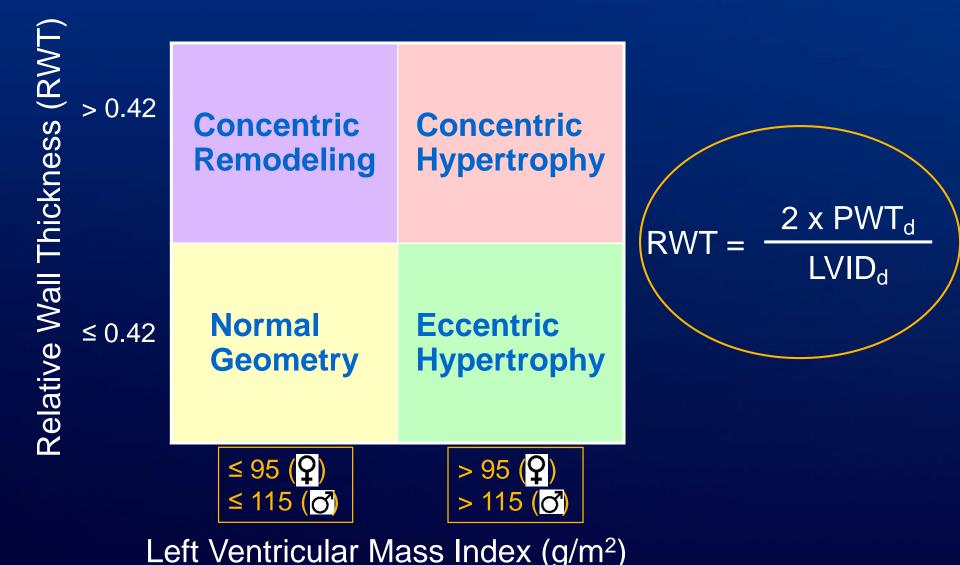
- Echocardiogram demonstrates enlarged left ventricle with global hypokinesis, LVEF 23%, Moderate mitral regurgitation
 - LVEDD 79mm
 - Septal wall 9 mm
 - LV Mass 121 gm/m2
- LVESD 74 mm Posterior wall 9 mm

- Which best describes the remodeling of the left ventricle
- 1. Concentric remodelling
- 2. Normal geometry
- 3. Concentric hypertrophy
- 4. Eccentric hypertrophy


Interpretation of LV Mass

		Male				Female				
	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal		
LV mass by linear method										
Septal wall thickness (cm)	0.6–1.0	1.1-1.3	1.4–1.6	>1.6	0.6-0.9	1.0-1.2	1.3–1.5	>1.5		
Posterior wall thickness (cm)	0.6-1.0	1.1-1.3	1.4–1.6	>1.6	0.6-0.9	1.0-1.2	1.3-1.5	>1.5		
LV mass (g)	88-224	225-258	259-292	>292	67–162	163–186	187–210	>210		
LV mass/BSA (g/m ²)	49-115	116-131	132-148	>148	43-95	96-108	109-121	>121		
LV mass by 2D method										
LV mass (g)	96–200	201-227	228-254	>254	66–150	151–171	172-193	>193		
LV mass/BSA (g/m ²)	50–102	103–116	117–130	>130	44–88	89–100	101–112	>112		

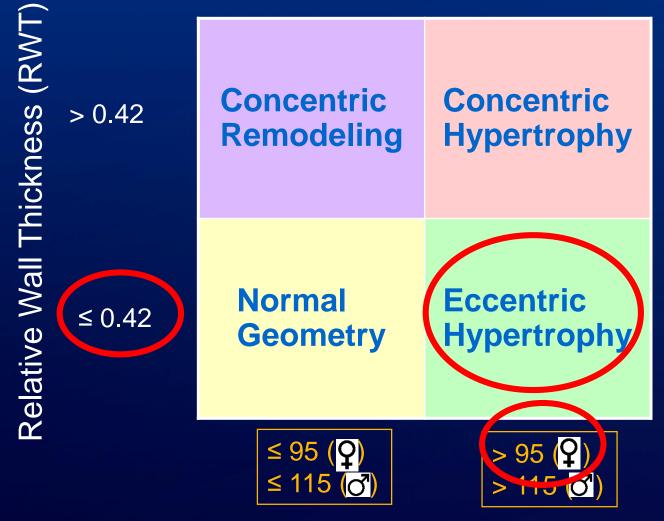
Lang RM et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.


Classification of LV Geometry

Lang RM et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39.

Relative Wall Thickness

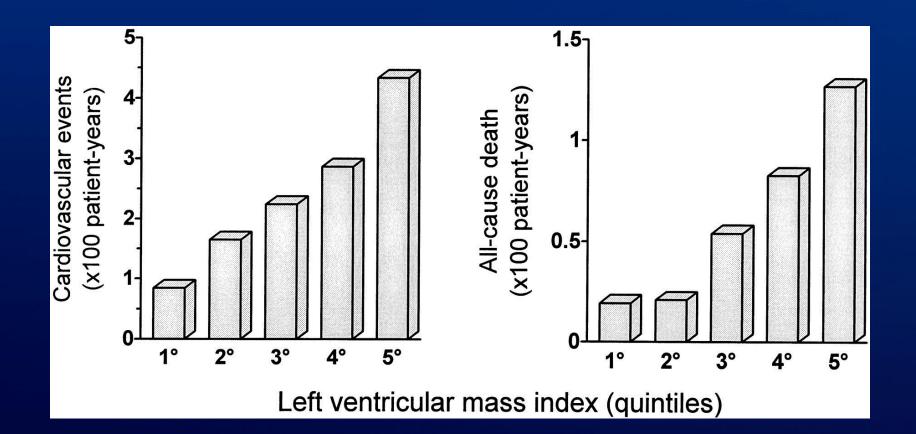
©2016 MFMER | slide-36


Calculate relative wall thickness (RWT)

• RWT = $\frac{2 \times PWT_d}{LVID_d}$ • RWT = $\frac{2 \times 9}{79}$ • RWT = 0.22

Plot on 2 by 2 table

Relative Wall Thickness



Left Ventricular Mass Index (g/m²)

- Which best describes the remodeling of the left ventricle
- 1. Concentric remodelling
- 2. Normal geometry
- 3. Concentric hypertrophy
- 4. Eccentric hypertrophy

LV Mass: A Marker of Prognosis

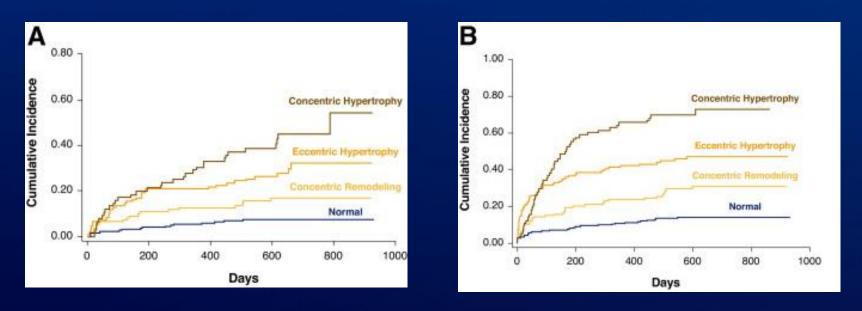
MAYO CLINIC

Schillaci G et al. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 2000;35:580-6.

Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes

Jonathan C L Rodrigues, ^{1,2} Antonio Matteo Amadu, ^{1,3} Amardeep Ghosh Dastidar, ^{1,4} Gergley V Szantho, ^{1,5} Stephen M Lyen, ^{1,6} Cattleya Godsave, ⁷ Laura E K Ratcliffe, ⁸ Amy E Burchell, ^{4,8} Emma C Hart, ^{2,8} Mark C K Hamilton, ⁶ Angus K Nightingale, ^{4,8} Julian F R Paton, ^{2,8} Nathan E Manghat, ^{1,6} Chiara Bucciarelli-Ducci^{1,4}

Heart 2016;102:1671-1679.


Conclusions Myocardial interstitial fibrosis varies across hypertensive LV phenotypes with functional consequences. Eccentric LVH has the most fibrosis and systolic impairment. Concentric remodelling is only associated with abnormal aortic function. Understanding these differences may help tailor future antihypertensive treatments.

LV Geometry: Clinical Implications

All Cause Mortality

Cardiovascular Events

Verma A et al. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study. JACC Cardiovasc Imaging 2008;1:582-91.

Questions & Discussion

