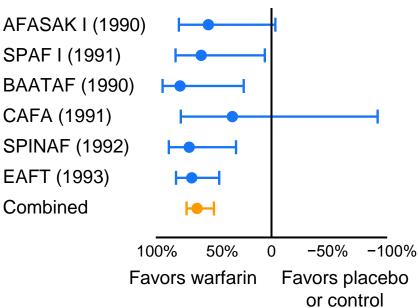
Identifying Patients for Anticoagulation: While Many Patients Remain Untreated, Who Should NOT be Anticoagulated?

Renato D. Lopes, MD MHS PhD Professor of Medicine Division of Cardiology Duke Clinical Research Institute Duke University Medical Center

Duke Clinical Research Institute

From Thought Leadership to Clinical Practice

Disclosures


Conflict of interest disclosures available at http://www.dcri.duke.edu/research/coi

Oral Anticoagulation for stroke prevention

Warfarin comparedRelative Risk Reductionto control or placebo(95% Cl)

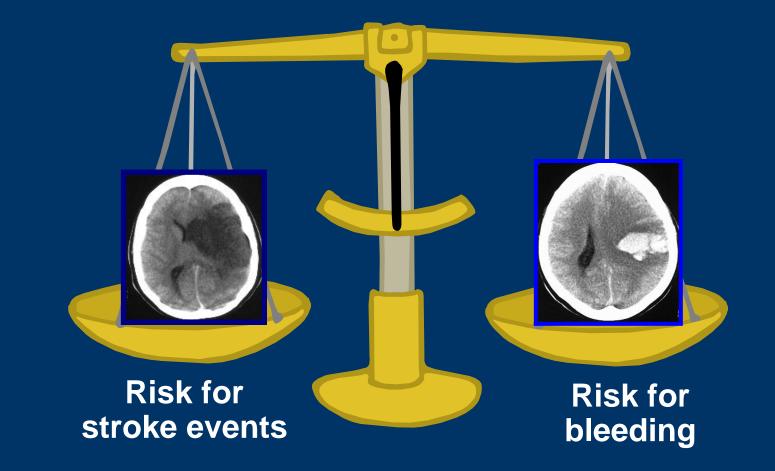
Trial

RRR 64%

Warfarin vs. Placebo or Control (6 trials, total n=2,900)

Hart R, et al. Ann Intern Med. 2007;146:857-867.

Relative Risk Reduction (95% CI)


RE-LY (2009) ROCKET AF (2011) ARISTOTLE (2011) ENGAGE AF-TIMI 48 (2013) Combined 50% 0 -50% Favors NOAC Favors warfarin

RRR 19%

NOAC vs. Warfarin (4 trials, total n=71,683)

Ruff C, et al. Lancet. 2014;383:955-962.

Anticoagulant Therapy in Atrial Fibrillation

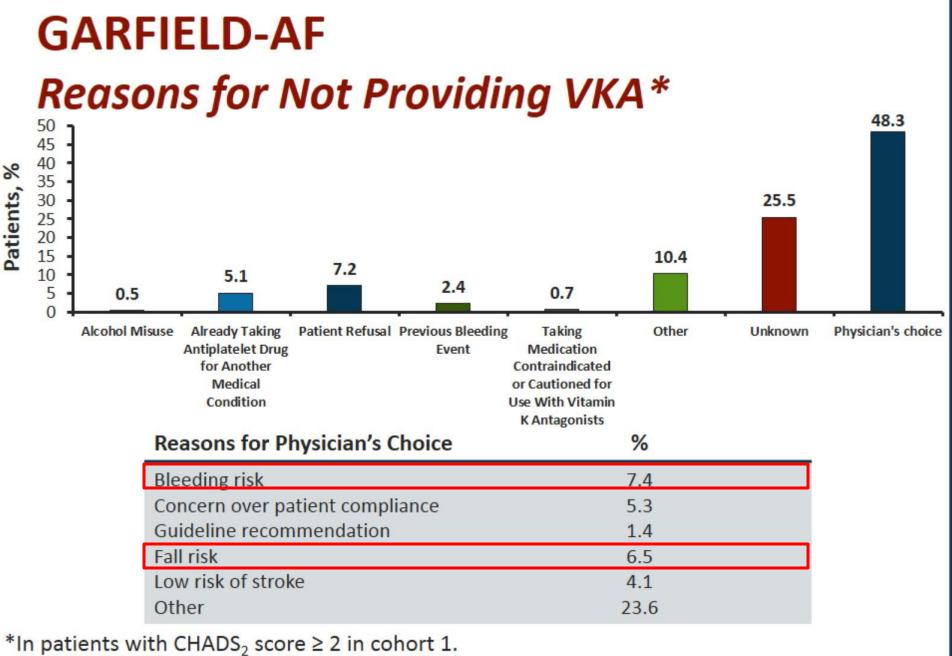
Duke Clinical Research Institute

ARISTOTLE *Correlation between CHADS*₂ *and HAS-BLED scores*

CHADS ₂	HAS-BLED			
	0–1	2	≥3	
0–1	2980	2142	1061	
	(43)	(32)	(23)	
2	2621	2549	1346	
	(38)	(38)	(30)	
≥3	1275	2091	2136	
	(19)	(31)	(47)	

Duke Clinical Research Institute

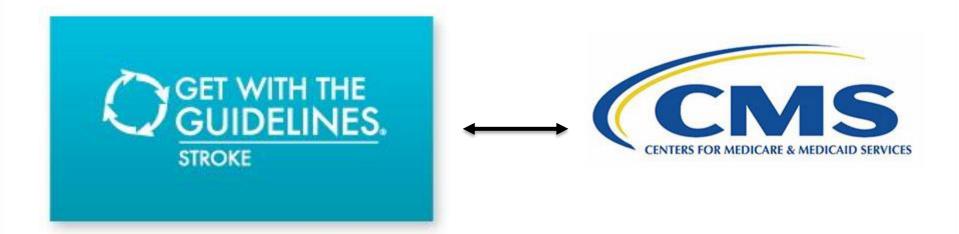
Lopes et al. Lancet 2012


Contraindications to Anticoagulation

ORBIT AF (n= 10,130; 13% with contraindication)

Contraindication [†]	Overall (n = 1330)	<75 (n = 493)	≥75 (n = 837)	P§
Prior bleed	27.7	21.1	31.7	<.0001
Patient refusal	27.5	31.6	25.1	.01
High bleeding risk	18.0	15.4	19.5	.06
Frequent falls/frailty	17.6	5.9	24.5	<.0001
Need for dual APT	10.4	12.0	9.4	.14
Unable to adhere	6.0	7.3	5.3	.13
Comorbid Illness	5.3	6.1	4.8	.30

Obrien E AHJ 201467:601-609.e1



Kakkar AK, et al. PLoS One. 2013;8:e63479.

- GWTG National Inpatient Stroke Registry (2007-2011)
- Linkage to CMS claims

Reasons for No Anticoagulation in Afib Patients with a Pre-Stroke CHA₂DS₂-VASc≥2

Documented Reasons	Total N=58,084 (%)
Risk for bleeding	9476 (16.3)
Risk for falls	5968 (10.3)
Allergy to or complication with warfarin or heparins	341 (0.6)
Serious side effect to medication	583 (1.0)
Patient/family refused	2476 (4.3)
Mental status	652 (1.1)
Terminal illness	3616 (6.2)
At least 1 documented reason	19,835 (34.2)
No documented reason	38,249 (65.8)

European Heart Journal doi:10.1093/eurheartj/ehw054

The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation

Ziad Hijazi^{1,2*}, Johan Lindbäck², John H. Alexander³, Michael Hanna⁴, Claes Held^{1,2}, Elaine M. Hylek⁵, Renato D. Lopes³, Jonas Oldgren^{1,2}, Agneta Siegbahn^{2,6}, Ralph A.H. Stewart⁷, Harvey D. White⁷, Christopher B. Granger³, and Lars Wallentin^{1,2}, on behalf of the ARISTOTLE and STABILITY Investigators

Duke Clinical Research Institute

New biomarker based risk score in AF

The new score was named ABC stroke score (Age, Biomarkers, Clinical history)

Points	0 1 2 3 4 5 6 7 8 9 10
Prior stroke/TIA	Stroke/TIA I No
Age	44 55 65 75 90
Troponin I (ng/L)	1 2 5 10 30 75 180
NT-proBNP (ng/L)	25 50 100 200 400 800 1500 3000 5900
Total Points	0 5 10 15 20 25 30
1-year risk of stroke/SE	0.01 0.02 0.03 0.05 0.1 0.15
3-year risk of stroke/SE	0.01 0.02 0.03 0.05 0.1 0.2 0.3

Nomogram for the variables in the ABC risk score proportional to the Cox-model coefficients

U Duke Clinical Research Institute

Hijazi Z, et al. *Eur Heart J* 2016;37:1582-90.

Comparison of ABC stroke risk score with other ARISTOTLE risk scores

C-statistics for prediction of stroke or systemic embolism

Risk score	C-statistic
ABC	0.68
CHA ₂ DS ₂ VASc	0.62

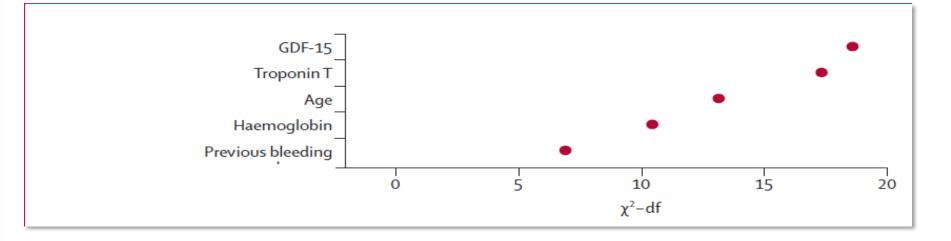
	Condition	Points
С	Congestive heart failure	1
Н	Hypertension $> 140/90$ mmHg or treated	1
A_2	$Age \ge 75$ years	2
D	Diabetes Mellitus	1
S_2	Prior stroke or TIA	2
V	Vascular disease	1
А	Age $65 - 74$ years	1
\mathbf{Sc}	Sex category (female)	1

CHA₂DS₂VASc score

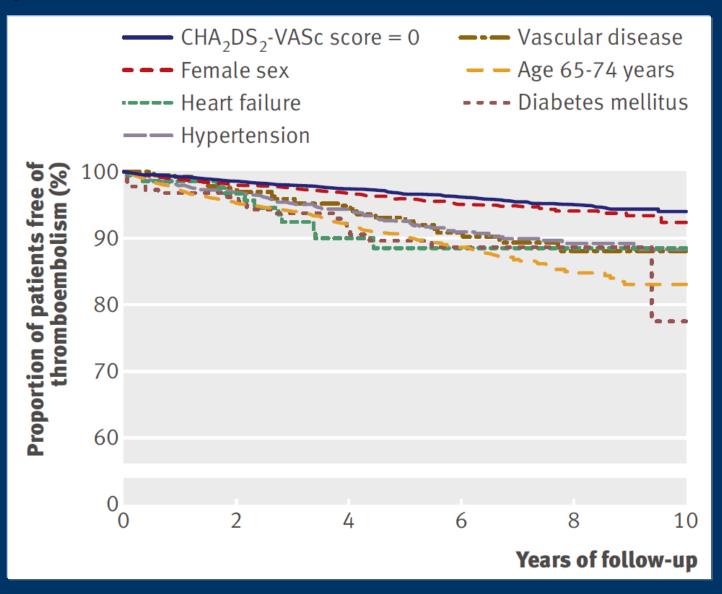
Duke Clinical Research Institute

Hijazi Z, et al. Eur Heart J 2016;37:1582-90.

The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study


Ziad Hijazi, Jonas Oldgren, Johan Lindbäck, John H Alexander, Stuart J Connolly, John W Eikelboom, Michael D Ezekowitz, Claes Held, Elaine M Hylek, Renato D Lopes, Agneta Siegbahn, Salim Yusuf, Christopher B Granger, Lars Wallentin, on behalf of the ARISTOTLE and RE-LY Investigators

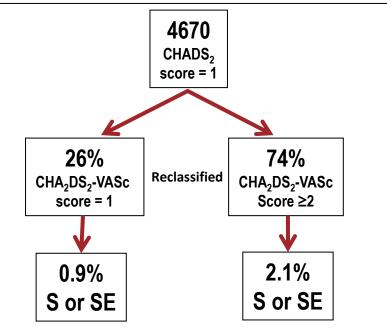
Hijazi Z, et al. Lancet. 2016:S0140-6736.


The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study

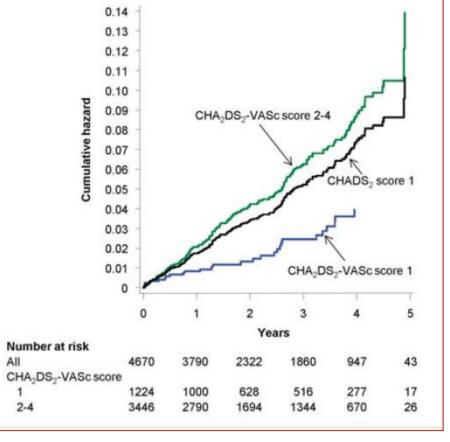
ABC-bleeding score (age, biomarkers [GDF-15, cTnT-hs (or creat clearance), and hemoglobin], and clinical history [previous bleeding]) score yielded a higher c-index than HAS-BLED and ORBIT scores for major bleeding in both the derivation (0.68 vs 0.61 vs 0.65) and validation (0.71 vs 0.62 vs 0.68) cohorts

Hijazi et al. Lancet 2016387: 2302–11

Danish Hospital Registry Data 1997-2006 14,572 patients CHADS-VASc 0 or 1


Duke Clinical Research Institute

Olesen J. BMJ 2011;342:d124


CHA₂DS₂-VASc Identifies Patients with CHADS₂=1 Who May Not Benefit from Anticoagulation

Of 4670 patients from AVERROES & ACTIVE trials with CHADS₂ score = 1

- 74% up-classified to CHA₂DS₂-VASc score of <u>></u>2 definitely requiring anticoagulation and
- 26% to score of 1 not requiring anticoagulation

S, stroke; SE, systemic embolus Coppens M et al. *Eur Heart J*. 2013;34:170-176. Reproduced with permission of Oxford University Press.

Kaplan-Meier cumulative hazard rates of composite outcome of ischemic or unspecified stroke and non-CNS sys embolism in patients treated with aspirin only or with combined aspirin and clopidogrel.

Should patients with or at risk of falls receive anticoagulation?

Choosing Antithrombotic Therapy for Elderly Patients With Atrial Fibrillation Who Are at Risk for Falls

Malcolm Man-Son-Hing, MD, MSc, FRCPC; Graham Nichol, MD, MPH, FRCPC; Anita Lau; Andreas Laupacis, MD, MSc, FRCPC

- Among older patients, falling is common (about 30% fall at least once a year), and subdural hematomas are uncommon
- "... persons taking warfarin must fall about 295 times in 1 year for warfarin to not be the optimal therapy."

Anticoagulation in Patients with AF at Risk for Falls

- ICH rates per 100 patient-years¹
 - High fall risk: 2.8
 - Other patients: 1.1
 - Traumatic ICH: 2.0 vs 0.34
- Ischemic stroke rates per 100 patient-years
 - High fall risk: 13.7
 - Other patients: 6.9

RISK¹: HRs: Independent Predictors of ICH

Factor	HR (95% CI)
Prior stroke	2.1 (1.6-2.7)
Prior major bleed	1.9 (1.4-2.4)
Neuropsychiatric impairment	1.4 (1.0-3.1)

There is no good evidence that quantifies the degree to which "fall risk" or a "history of falls" increases the chance of serious ICH.

CI=confidence interval; HR=hazard ratio

1. Gage BF, et al. Am J Med. 2005;118:612-617.

Rates of Intracranial Bleeding by Location, Type and Randomized Treatment

	Apixaban	Warfarin	Hazard Ratio (95% CI)	p-value
	Rate (n)	Rate (n)	Apixaban vs. Warfarin	
All Intracranial (n = 174)	0.33 (52)	0.80 (122)	0.417 (0.302 - 0.577)	<.0001
Spontaneous (n = 119)	0.26 (41)	0.51 (78)	0.515 (0.353 - 0.751)	0.0006
Traumatic (n = 47)	0.06 (10)	0.24 (37)	0.264 (0.131 - 0.531)	0.0002
Intracerebral (n = 106)	0.22 (34)	0.47 (72)	0.462 (0.308 - 0.695)	0.0002
Spontaneous (n = 94)	0.20 (31)	0.41 (63)	0.482 (0.314 - 0.741)	0.0009
Traumatic (n = 12)	0.02 (3)	0.05 (8)	0.367 (0.097 - 1.382)	0.1382
Subdural (n = 43)	0.06 (10)	0.22 (33)	0.296 (0.146 - 0.601)	0.0007
Spontaneous (n = 14)	0.02 (3)	0.07 (11)	0.266 (0.074 - 0.953)	0.0419
Traumatic (n = 29)	0.05 (7)	0.14 (22)	0.311 (0.133 - 0.729)	0.0072
Subarachnoid (n = 14)	0.03 (5)	0.06 (9)	0.544 (0.182 - 1.624)	0.2753
Spontaneous (n = 8)	0.03 (5)	0.02 (3)	1.637 (0.391 - 6.849)	0.4999
Traumatic (n = 6)	0.00 (0)	0.04 (6)		

Duke Clinical Research Institute

Lopes RD, et al. Presented at AHA 2015. Data on file; Lopes RD, et al. (Manuscript under review).

How much AF is enough to increase the risk for stroke? Studies evaluating risk of stroke vs AF burden

Year	Study	n	AF Burden Measure	HR for stroke
2003	MOST	312	5 min	6.7 p=0.02
2005	Capucci	725	>24 hrs	3.1 p=0.04
2009	Botto	568	CHADS + AF burden	6.2 (5 vs 0.8%)
2009	TRENDS	2486	5.5 hrs	2.2 p=0.06
2012	Home monitor CRT	560	3.8 hrs	9.4 p=0.006
2012	ASSERT	2580	6 min	2.5 p=0.008

Glotzer T, et al. *Circulation* 2003;107:1614-9. Capucci A, et al. *J Am Coll Cardiol* 2005;46:1913-20. Botto GL, et al. *J Cardiovasc Electrophysiol* 2009;20:241-8. Glotzer T. *Circ Arrhythm Electrophysiol* 2009;2:474-80 Shanmugam N, et al. *Europace* 2012;14:230-7.. Healey JS, et al. *N Engl J Med* 2012;366:120-9. Camm AJ, et al. *Am J Cardiol* 2012;110:270-276.

Should we be looking for and treating subclinical, silent AF? ASSERT 2580 pts w/ PPM or ICD, monitored x 3 mo

	Device-Detected Atrial Tachyarrhythmia			Device-Detected Atrial			
Event	Absent N=2319		Present N= 261		Tachyarrhythmia Present vs. absent		
	events	%/year	events	%/ year	RR	95% CI	р
Ischemic Stroke or Systemic Embolism	40	0.69	11	1.69	2.49	1.28 - 4.85	0.007
Vascular Death	153	2.62	19	2.92	1.11	0.69 – 1.79	0.67
Stroke / MI / Vascular Death	206	3.53	29	4.45	1.25	0.85 – 1.84	0.27
Clinical Atrial Fibrillation or Flutter	71	1.22	41	6.29	5.56	3.78 – 8.17	<0.001

Duke Clinical Research Institute

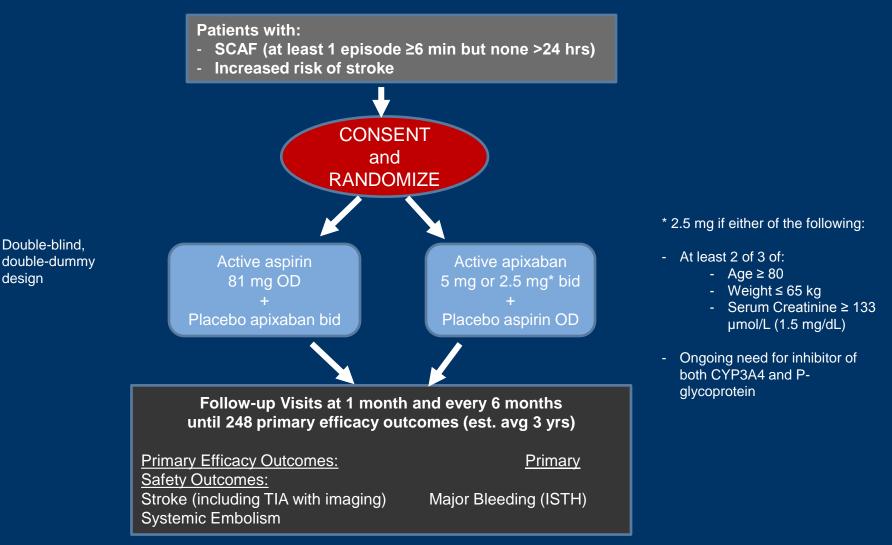
From Thought Leadership to Clinical Practice

Healy et al. NEJM 2012;366:120-9.

ARTESIA

<u>APIXABAN FOR THE REDUCTION OF THROMBO-EMBOLISM IN PATIENTS</u> WITH DEVICE-DETECTED <u>SUB-CLINICAL ATRIAL FIBRILLATION</u>

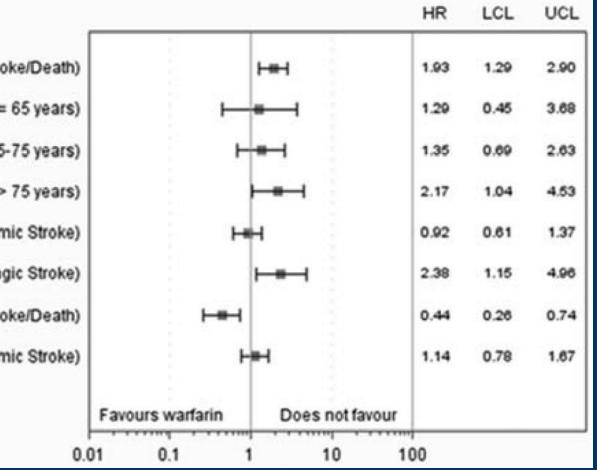
U Duke Clinical Research Institute


From Thought Leadership to Clinical Practice

From Thought Leadership to Clinical Practice

https://clinicaltrials.gov/ct2/show/NCT01938248.

Study Design



Atrial Fibrillation in Hemodialysis

- AF prevalence reported up to 27% in hemodialysis population, at least twice that of age-matched patients not on HD
- Most strongly related to age; Genovesi found 17% in age 51-60, 37% in 71-80 years
- USRDS/ Medicaid data, increase from 2% to 17% over age range from <55 to >85 years

Genovesi, S. et al. Am. J. Kidney Dis. 2005;46:897–902 . Wetmore, J. B. et al. Kidney Int. 2012;81:469–476.

AF, dialysis, warfarin use in Ontario and Quebec, 1998 to 2007

Chan (2009) (Stroke/Death) Wizemann (2010) (Stroke/Death) (<= 65 years) Wizemann (2010) (Stroke/Death) (65-75 years) Wizemann (2010) (Stroke/Death) (> 75 years) Winkelmayer (2011) (Ischemic Stroke) Winkelmayer (2011) (Hemorrhagic Stroke) Olesen (2012) (Stroke/Death) Our Study (2013) (Ischemic Stroke)

- Very high risk of major/lifethreatening bleeding or ICH with low/moderate CHADSVASC score
- Unable to tolerate warfarin and unable to afford NOAC
- CHADSVASC =0 in male or 1 (female)
- CHADSVASC 1 (male) or 2 (female): not everyone (Bleeding risk, chadsvasc criterion)

- Patients with AF and stable CAD/stent and CHADSVASC<2
- SubClinical AF (6 min to 24 hours)
- Dialysis ??
- Patients with Left atrial appendage occlusion device

"In medicine, therapeutic decisions should be based on science; the 'art' of medicine is in how you interact with the patient."

- Robert M. Califf MD

Thank you!

Duke Clinical Research Institute

From Thought Leadership to Clinical Practice

