

Considering SAVR in the TAVR era: Surgical Implications of TAVR

Vinod H. Thourani, MD, FACC, FACS

Professor of Cardiothoracic Surgery and Medicine Chief of Cardiothoracic Surgery, Emory Hospital Midtown Co-Director, Structural Heart and Valve Center Emory University School of Medicine

ACC Evolving Valve Management Strategies Roundtable December 17, 2016

Disclosures

- Edwards Lifesciences
 - Emory Co-PI: PARTNER 1 and 2
 - National Co-PI: PARTNER 2 (SAPIEN 3 Trial) with Dr. Susheel Kodali
- St. Jude Medical
 - Emory PI Portico Trial, Structural Heart Advisory board
- Boston Scientific
 - Emory PI: REPRISE Trial
 - Advisory Board, Executive Comm (Lotus Valve Trial)
- Medtronic
 - Emory PI: SURTAVI Trial
- Jenavalve
 - National Co-PI with Drs. Martin Leon and Susheel Kodali
- Abbott Medical
 - Emory Co-PI: Coapt Trial
- Apica Cardiovascular
 - IP, co-founder

TAVR 2015

EMORY

1. Open IDE studies for intermediate risk indication

TAVR Centers (n=230)'No TAVR' Centers (n=571)

Cumulative TVT Sites 2012 to September 2015

Effect of Availability of Transcatheter Aortic-Valve Replacement on Clinical Practice

Jochen Reinöhl, M.D., Klaus Kaier, Ph.D., Holger Reinecke, M.D., Claudia Schmoor, Ph.D., Lutz Frankenstein, M.D., Werner Vach, Ph.D., Alain Cribier, M.D., Friedhelm Beyersdorf, M.D., Christoph Bode, M.D., and Manfred Zehender, M.D., Ph.D.

> Reinöhl J, et al. NEJM. 2015; 373:2438

able 1. Numbers of Surgical AorticV alve Replacement (SAVR) and Transcatheter Aortic V alve Replacement (TAV R) Procedures, According to Year.*								
Procedure	2007	2008	2009	2010	2011	2012	2013	Total
SAVR								
Total no. (frequency) †	8622 (10.5)	8608 (10.5)	8259 (10.1)	8109 (9.9)	7899 (9.7)	7452 (9.1)	7048 (8.7)	55,992 (9.8)
Bioprostheses — no . (%)	6128 (71.1)	6196 (720)	6284 (75.1)	6266 (77.3)	6296 (79.7)	6050 (81.2)	5838 (82.8)	43,058 (76.9)
Mechanical prost heses — no. (%)	1810 (21.0)	1708 (19.8)	1333 (16.1)	1228 (15.1)	1104 (14.0)	1013 (13.6)	847 (12.0)	9,038 (16.1)
Other prostheses — no. (%) \$	689 (8D)	712 (83)	645 (7.8)	621 (7.7)	505 (6.4)	391 (5.2)	365 (5.2)	3,928 (7.0)
TAVR								
Total — no. (frequency) †	144 (0.2)	1122 (1.4)	2599 (3.2)	4805 (5.9)	6523 (8.0)	8240 (10.1)	9147 (11.3)	32,581 (5.7)
Transfernoral— no. (%)	NA	825 (735)	1618 (62.3)	3051 (63.5)	4283 (65.7)	5881 (71.4)	6794 (74.3)	22,452 (68.9)
Transapical — no. (%)	NA	302 (26.9)	986 (37.9)	1772 (36.9)	2253 (345)	2363 (28.7)	2367 (25.9)	10,043 (30.8)
All procedures — no.	8766	9725	10,858	12,915	14,422	15,692	16,195	88, 57 3

Reinöhl J, et al. NEJM. 2015; 373:2438

Reinöhl J, et al. NEJM. 2015; 373:2438

Reinöhl J, et al. NEJM. 2015; 373:2438

Evolution of the Treatment of Aortic Stenosis

Surgery is the only treatment

Surgery is the gold standard treatment

Surgery is the preferred treatment for low and intermediate risk patients

Transcatheter interventions are performed in intermediate risk patients

Surgery is performed in patients with contraindication to transcatheter approach

Impact on mortality of paravalvular leakage Comprehensive literature review

Table 3 Outcomes Associated With Aortic and/or Paravalvular Regurgitation

Author, Year (Ref. #)	n	Variable	Outcome	Univariate Analysis	Multivariate Analysis
Abdel-Wahab, 2011 (3)	690	AR ≥2	In-hospital mortality	OR = 2.50 (1.37-4.55)	OR = 2.43 (1.22-4.85)
Gotzmann, 2011 (4)	122	AR ≥2	6-month mortality No clinical improvement	_	OR = 4.26 (1.59-11.45) OR = 10.1 (3.20-31.94)
Takagi, 2011 (15)	41	AR ≥2	6-month mortality	12.2% vs. 25.0% (p = 0.25)	-
Hayashida, 2012 (89)	260	AR ≥2	Median 217 days (IQR: 54-401)	HR = 1.97 (1.19-3.28)	—
Leber, 2011 (90)	69	AR >2	1-year mortality	9% vs. 37.5% (p = 0.07)	-
Moat, 2011 (5)	870	AR ≥2	1-year mortality	HR = 1.49 (1.00-2.21)	HR = 1.66 (1.10-2.51)
Sinning, 2012 (91)	152	PVL ≥2	1-year mortality	HR = 4.0 (2.1-7.5)	HR = 4.9 (2.5-9.6)
Tamburino, 2011 (6)	663	PVL ≥2	Late mortality	—	HR = 3.79 (1.57-9.10)
Sinning, 2012 (41)	146	Moderate/severe PVL	1-year survival	HR = 3.9 (2.0-7.5)	HR = 2.4 (1.0-5.4)
Unbehaun, 2012 (26)	358	No vs. trace vs. mild AR	2-year survival	66% vs. 72% vs. 67% (p = 0.77)	—
Kodali, 2012 (8)	158	Mild to severe AR	2-year survival	HR = 1.75 (1.17-2.61)	Not significant
		Mild to severe PVL	2-year survival	HR = 2.11 (1.43-3.10)	Not significant

Genereux & Head et al. JACC 2013;61:1125-36

Heart Team

Adapted from Dr. Kappetein

Risk Model Workgroup

 Develop a predictive tool to calculate in-hospital mortality at the patient level (a patient risk score similar to the online STS risk calculator).

Main issues Aortic-valve-in-valve procedures

- Malpositioning
- Ostial coronary occlusion
- Residual stenosis

Bioprosthetic Valves

ORIGINAL ARTICLE

Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves

R.R. Makkar, G. Fontana, H. Jilaihawi, T. Chakravarty, K.F. Kofoed, O. de Backer,
F.M. Asch, C.E. Ruiz, N.T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng,
M. Kashif, V. Jelnin, C.A. Kliger, H. Guo, A.D. Pichard, N.J. Weissman, S. Kapadia,
E. Manasse, D.L. Bhatt, M.B. Leon, and L. Søndergaard

Volume rendered CT images of bioprosthetic valves

An All-comers Randomized Clinical Trial Comparing TAVR with SAVR in Patients with Aortic Valve Stenosis

Lars Søndergaard

The Heart Center, Rigshospitalet, Copenhagen, Denmark - on behalf of the NOTION Investigators

Enrollment Criteria

Main inclusion criteria

- Severe AS
- Age ≥70 years
- Life expectancy \geq 1 year
- Suitable for TAVR & SAVR

Main exclusion criteria

- Severe CAD
- Severe other valve disease
- Prior heart surgery
- Need for acute treatment
- Recent stroke or MI
- Severe lung disease
- Severe renal failure

Baseline Characteristics

Characteristic, % or mean \pm SD	TAVR n=145	SAVR n=135	p-value	
Age (yrs)	79.2 ± 4.9	79.0 ± 4.7	0.71	
Male	53.8	52.6	0.84	
STS Score	2.9 ± 1.6	3.1 ± 1.7	0.30	
STS Score < 4%	83.4	80.0	0.46	
Logistic EuroSCORE I	8.4 ± 4.0	8.9 ± 5.5	0.38	
NYHA class III or IV	48.6	45.5	0.61	

Secondary Outcomes at 2 Years

		1 Year			2 Years	
Outcome, %	TAVR	SAVR	p-value	TAVR	SAVR	p-value
Death, any cause	4.9	7.5	0.38	8.0	9.8	0.54
Death, cardiovascular	4.3	7.5	0.25	6.5	9.1	0.40
Stroke	2.9	4.6	0.44	3.6	5.4	0.46
TIA	2.1	1.6	0.71	6.0	3.3	0.30
Myocardial infarction	3.5	6.0	0.33	5.1	6.0	0.69
Atrial fibrillation	21.2	59.4	<0.001	22.7	60.2	<0.001
Pacemaker	38.0	2.4	<0.001	41.3	4.2	<0.001
Aortic valve re-intervention	0.0	0.0	N/A	0.0	0.0	N/A

Aortic Valve Regurgitation

Discussion Points

- How do we decide between SAVR or TAVR?
 - Heart Team, Scores (which score: EuroSCORE II, STS, TVT...)
- Are we ready for TAVR in low-risk pts, in light of PV leak, pacemaker rates, thrombosis... Should we mandate a randomized trial?
- Are we comfortable with the long-term durability data to implant in younger patients?
- Will TAVR in it's current scheme, be cost-prohibitive?
- Should patient's over 65 yrs always have a 23 valve implanted?
- Are certain pt populations better served with mini-AVR: bicuspid, low-risk, those with prior 21 valve, low-lying coronaries, etc...

Thanks

Vinod H. Thourani, MD

Emory University

vthoura@emory.edu