

Cardiogenic Shock and Initiatives to Reduce Mortality

Tanveer Rab, MD, FACC
William O'Neill, MD, FACC
Perwaiz Meraj, MD, FACC
Alex Truesdell, MD, FACC

Interventional
MEMBER SECTION

The Golden “Hours”?

- 50% dead within 10 hours
- Overall mortality 86%
- Need: right treatment, right place, right time

Incidence of Cardiogenic Shock Growing

Cardiogenic Shock in STEMI Increasing ¹

STEMI Cardiogenic Shock in Medicare Age Increasing ²

Age ≥ 65 only, excludes non-Medicare population

1. Dhaval Kolte et al. J Am Heart Assoc 2014 NATIONWIDE INPATIENT SAMPLE
2. Centers for Medicare and Medicaid database, MEDPAR FY14

AMERICAN
COLLEGE of
CARDIOLOGY

Nationwide Inpatient Sample Databases

PCI Mortality with Cardiogenic Shock Remains a Clinical Challenge

AMI Cardiogenic Shock with PCI only; Overall mortality >50%

Wayangankar, et al. JACC Int 2016 CATH-PCI Registry

AMERICAN
COLLEGE of
CARDIOLOGY

FITT-STEMI TRIAL

*Q10min delay after 90 min
→ 3.31xdeath/100 PCI tx
CS pts w/o OHCA*

FITT-STEMI TRIAL

Deaths from Cardiogenic Shock Complicating STEMI are Increasing

EDITORIAL COMMENT

Disappointing Results, But We Must Carry On*

Tanveer Rab, MD

- Lack of early Mechanical Circulatory Support
 - Use of IABP

NCDR 2017: Low use of LV support (< 3 %)

IABP used predominantly

Right Heart Cath is important with two important derived hemodynamic calculations

Hemodynamic Calculations

(1) Cardiac Power Output (CPO) $\frac{\text{MAP} \times \text{CO}}{451}$
Normal > 0.6 Watts

(2) Pulmonary Artery Pulsatility Index (PAPI) $\frac{\text{sPAP} - \text{dPAP}}{\text{RA}}$
Normal > 1.0

AMERICAN
COLLEGE of
CARDIOLOGY

Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock SHOCK trial registry

Unadjusted estimated in-hospital mortality by cardiac power output (n = 189) with pointwise 95% confidence bands.

Right sided involvement in 50 % of shock patients

AMERICAN
COLLEGE of
CARDIOLOGY

Haemodynamics

The Pressure-Volume Loop

AMERICAN
COLLEGE of
CARDIOLOGY

Haemodynamics

Ea - Effective
Arterial Elastance –
a component of
afterload

E_{max} – load-
independent LV
contractility = maximal
slope of ESPVR

AMERICAN
COLLEGE of
CARDIOLOGY

Myocardial Infarction

AMERICAN
COLLEGE of
CARDIOLOGY

Cardiogenic Shock

AMERICAN
COLLEGE of
CARDIOLOGY

Effects of Mechanical Support

IABP

- Reduces peak systolic and diastolic pressures
- Increases LV stroke volume

Reduced slope of arterial elastance (Ea_2)

pLVAD

- Reduces LV pressures, LV volumes and LV stroke volume

Reduced cardiac workload

V-A ECMO (no vent)

- Increases LV systolic and diastolic pressures
- Reduces LV stroke volume

Increased slope of arterial elastance (Ea_2)

AMERICAN
COLLEGE of
CARDIOLOGY

AMI Shock Often Treated in Community Hospitals

The arguments are:
I only have the balloon pump in my lab

TCTMD Poll June 2016
Which support devices do you have in your cath lab?

AMERICAN
COLLEGE of
CARDIOLOGY

AMERICAN
COLLEGE of
CARDIOLOGY

ACC/AHA 2013 and ESC 2017 Guidelines for LV support in Cardiogenic Shock

- IABP

Disagreement:

Class IIb (ACC/AHA)

Class III (ESC)

- MCS

Agreement:

Class IIb in refractory cardiogenic shock

AMERICAN
COLLEGE of
CARDIOLOGY

Mechanism	Pneumatic
Device Configuration	Descending aorta via femoral artery
Maximal Support	0.5 – 1 LPM
LV Unloading	+
Implant time, complexity	+
Management Complexity	+
Limb Ischemia Risk	+
Hemolysis Risk	0
Hemorrhage Risk	+
Contraindications	AI, severe PAD, Aortic disease

Modified from Atkinson TM et al, JACC Cardiovasc Interv 2016.

AMERICAN
COLLEGE of
CARDIOLOGY

IABP

IABP in AMI Cardiogenic Shock: No Hemodynamic or Survival Benefit

IABP Increased hazard risk of stroke, downgraded to Class III (harm), Level of Evidence A, ESC STEMI Guidelines 2014

1- Prondzinsky R. et al. Jn Critical Care Medicine IABP SHOCK I 2010 – Clinicaltrial.gov # NCT00469248

2- Thiele H et al. NEJM 2012

Cardiogenic Shock in Acute MI

- 7 randomized trials, n 790 (75% from SHOCK II)
- 4 IABP vs no MCS
- 3 IABP vs other MCS
- No significant difference in survival

Evidence: Intra-Aortic Balloon Pump

Conclusion: IABP and inotropes increase mortality in Cardiogenic Shock

IABP increase cardiac work

Inotropes increase myocardial oxygen consumption and impair microcirculation

VA ECMO

Mechanism	Centrifugal
Device Configuration	Inflow: Femoral vein/IVC Outflow: Femoral artery Pump: Extracorporeal
Maximal Support	>5 LPM
LV Unloading	0
Implant time, complexity	++
Management Complexity	+++
Limb Ischemia Risk	+++
Hemolysis Risk	++
Hemorrhage Risk	++++
Contraindications	AI, severe PAD, contraindication to AC

VA- ECMO

Nationwide Inpatient Sample databases

4 fold increase
in use

Mortality unchanged
at 50 %

AMERICAN
COLLEGE of
CARDIOLOGY

Outcomes in Cardiac Arrest with VA ECMO

Nichol et al. (54)	CS and/or cardiac arrest	1,494 84 studies	VA-ECMO	50% survival to hospital discharge	Vascular injury, bleeding and stroke
ELSO registry (39)	Cardiac arrest	75% cardiac disease	2,633: 295 ECPR	VA-ECMO 91%	27% survival to hospital discharge
Takyama et al. (53)	Refractory CS, 23% active CPR	SBP <90 mm Hg, CI <2.0 l/min/m ² , evidence of end-organ failure despite inotropes/vasopressors or IABP	90	VA-ECMO	49% survival to hospital discharge Neurologic complications 33% Bleeding and stroke: 26% and 18% LV distention and pulmonary edema

AMERICAN
COLLEGE of
CARDIOLOGY

Tandem Heart

Mechanism	Centrifugal
Device Configuration	Inflow: LA via transeptal Outflow: Femoral artery Pump: Paracorporeal
Maximal Support	Up to 5 LPM
LV Unloading	++
Implant time, complexity	+++
Management Complexity	+++
Limb Ischemia Risk	+++
Hemolysis Risk	++
Hemorrhage Risk	+++
Contraindications	AI, severe PAD, contraindication to AC, LA thrombus

AMERICAN
COLLEGE of
CARDIOLOGY

Tandem Heart Outcome Data

Improved haemodynamic parameters

Increase in bleeding, limb ischaemia, and sepsis

IMPELLA

Mechanism	Axial
Device Configuration	Inflow: LV Outflow: Aorta Pump: Transaortic
Maximal Support	1-5 LPM (Impella 2.5, Impella CP, Impella 5)
LV Unloading	++ - +++
Implant time, complexity	++ - +++
Management Complexity	++
Limb Ischemia Risk	++
Hemolysis Risk	++
Hemorrhage Risk	++
Contraindications	LV thrombus, mechanical aortic valve, severe AS/AI, contraindication to AC

*Received FDA Approval for
Cardiogenic Shock after MI or OHS
due to LV failure -2016*

AMERICAN
COLLEGE of
CARDIOLOGY

Door to “Unloading”?

FIGURE 1 Forest Plot Comparing In-Hospital/30-Day Mortality in “Early” vs. “Late” Impella

CI = confidence interval.

- *Do as Surgeons do (bypass first [unload LV/RV], reperfuse last)*
- *Increasing clinical evidence that implantation of an Impella device prior to PCI STEMI and shock may improve survival*

Lauten et al Circ Heart Fail 2013
Kapur et al Circulation 2013
O’Neill et al J Interv Cardiol 2014
Kapur et al JACC Heart Fail 2015
Thiele et al Eur Heart J 2015

Basir et al Am J Cardiol 2016
Schroeter et al J Invasive Cardiol 2016
Flaherty et al JACC Interv 2017
Jensen et al; Eur Heart J Acute Cardiovasc Care 2018

AMERICAN
COLLEGE of
CARDIOLOGY

IQ Database¹

IABP/Inotropes Pre-PCI

Impella Pre-PCI

cVAD Registry²

IABP/ Inotropes Pre-PCI

Impella Pre-PCI

Abiomed Impella Quality (IQ) Database, US AMI/CGS Apr 2009– Jan 2017. Survival to device explant. Danvers, MA: Abiomed. O'Neill et al., J Int Cardiol 2014;27:1-11. Survival to hospital discharge

COLLEGE of
CARDIOLOGY

Timing of Support Impacts Outcomes

Randomization in AMI CS is Challenging

Prospective Impella Trials In Emergent Settings

Study	Trial ID	Condition	Pts Required (n)	Pts Enrolled (n)	Duration (months)	Status	Reason for Discontinuation
FRENCH TRIAL (2006)	NCT00314847	AMI CS	200	19	52	Discontinued	Low Enrollment
ISAR-SHOCK (2006)	NCT00417378	AMI CS	26	26	19	Completed	N/A
IMPRESS (2007)	NTR1079 trialregister.nl	STEMI Pre-CS	130	18	22	Discontinued	Low Enrollment
RECOVER I FDA (2008)	NCT00596726	PCCS	Up to 20	17	28	Completed	N/A
RECOVER II FDA (2009)	NCT00972270	AMI CS	384	1	18	Discontinued	Low Enrollment
RELIEF I (2010)	NCT01185691	ADHF	20	1	33	Discontinued	Low Enrollment
DANSHOCK (2012)	NCT01633502	AMI CS	360	~50	40	Enrolling	N/A

Problem: Low Enrollment

Impella vs Intra-Aortic Balloon Pump

IMPRESS TRIAL

- 48 patients (underpowered)
- Majority in cardiogenic shock after cardiac arrest
- 100% mechanical ventilation
- 35% not salvageable – anoxic brain injury and refractory CGS
- Enrollment not completed
- No difference in outcomes

Majority had device placement
AFTER PCI

Initiatives to Reduce Mortality

AMERICAN
COLLEGE of
CARDIOLOGY

ACTIVATE CATH LAB

ACCESS & HEMODYNAMIC SUPPORT

Coronary Angiography & PCI

Perform Post-PCI Hemodynamic Calculations

Wean OFF Vasopressors and Inotropes

Escalation of Support

Vascular Assessment

ICU Care

Device Weaning

Bridge to Decision

NATIONAL CARDIOPATHIC SHOCK INITIATIVE

NationalCSI@hfhs.org

www.henryford.com/cardiovascularshock

NationalCSI - Algorithm - v1.5 - 11/2017

AMERICAN
COLLEGE of
CARDIOLOGY

NATIONAL CSI ALGORITHM

RAPID Identification of Cardiogenic Shock

CARDIAC POWER OUTPUT

$$\text{CPO} = \text{MAP} \times \text{CO} / 451$$

PULMONARY ARTERY

PULSATILITY INDEX

$$\text{PAPI} = \text{sPA} - \text{dPA} / \text{RA}$$

Impella Support

PCI

Right Heart Cath

CPO < 0.6

PAPI < 0.9

Possible RV Failure

Consider RV Support

PAPI > 0.9

RV Normal

Consider ↑ of LV Support
or Transfer to LVAD Center

CPO \geq 0.6 and
PAPI > 0.9

Continue to Titrate
↓ Pressors/Inotropes

The National Cardiogenic Shock Initiative

88 Patients

Excluded

65 AMICS w/ Early MCS Support

Out of Hospital Cardiac Arrest – 10/65 (15%)

In Hospital Cardiac Arrest – 17/65 (31%)

Pre-PCI Impella 48/65 (74%)

IP/Post Impella 17/65 (26%)

Door to Balloon (STEMI) 98.3 min

Door to Support 91.5 min

23 patients

- 4 unwitnessed arrest w/ delay CPR
- 2 Septic Shock
- 1 Aortic Stenosis
- 1 massive PE
- 5 patients without evidence of shock
 - Procedural complication
 - Decompensated Heart Failure (2)
 - Hypertensive Emergency
- 9 patients with IABP prior to MCS

74% Survival (N=48/65)

AMERICAN
COLLEGE of
CARDIOLOGY

LACTATE LEVELS ACCORDING TO SURVIVAL

CARDIAC POWER OUTPUT ACCORDING TO SURVIVAL

Predictors of Survival CPO & Lactate at 12-24 hours (N=49/65)

Lactate < 3 & CPO < 0.8

83% Survival

Lactate > 3 & CPO < 0.8

36% Survival

Lactate < 3 & CPO > 0.8

95% Survival

Lactate > 3 & CPO > 0.8

66% Survival

On Behalf of the National CSI Investigators (Unpublished, March 2018)

MCS Options

*Minimal
benefit in
clinical trials*

*Labor
intensive*

*No LV
unloading*

AMERICAN
COLLEGE of
CARDIOLOGY

A Practical Approach to Mechanical Circulatory Support in Patients Undergoing Percutaneous Coronary Intervention

An Interventional Perspective

Tamara M. Atkinson, MD,^a E. Magnus Ohman, MD,^b William W. O'Neill, MD,^c Tanveer Rab, MD,^d Joaquin E. Cigarroa, MD,^a on behalf of the Interventional Scientific Council of the American College of Cardiology

(J Am Coll Cardiol Intv 2016;9:871-83)

AMERICAN
COLLEGE of
CARDIOLOGY

Cardiogenic Shock			Cardiac Arrest	High Risk PCI
Pre/Early	Shock	Severe Shock	ROSC	NO - ROSC
SBP <100mmHg HR 70-100 Normal Lactate Normal Mentation Cool Extremities CI 2-2.2 PCWP <20 LVEDP <20 CPO >1W Vasoactive Medications 0 or 1 low dose	SBP < 90mmHg HR >100 bpm Lactata >2 Altered mental status Cool Extremities CI 1.5-2.0 PCWP >20 LVEDP >20 CPO <1W Vasoactive Medications 1 moderate-high dose	SBP <90mmHg HR >120 Lactata >4 Obtunded Cool Extremities CI <1.5 PCWP >30 LVEDP >30 CPO <0.6 W Vasoactive Medications 2 or more		

Multidisciplinary Heart Team Consultation - Interventional Cardiology, Cardiothoracic Surgery, Advanced Heart Failure, Intensive Care

Cardiogenic Shock			Cardiac Arrest	High Risk PCI
Pre/Early	Shock	Severe Shock	ROSC	NO - ROSC
SBP <100mmHg HR 70-100 Normal Lactate Normal Mental status Cool Extremities CI 2-2.2 PCWP <20 LVEDP <20 CPO >1W Vasoactive Medications 0 or 1 low dose	SBP < 90mmHg HR >100 bpm Lactata >2 Altered mental status Cool Extremities CI 1.5-2.0 PCWP >20 LVEDP >20 CPO <1W Vasoactive Medications 1 moderate-high dose	SBP <90mmHg HR >120 Lactata >4 Obtunded Cool Extremities CI <1.5 PCWP >30 LVEDP >30 CPO <0.6 W Vasoactive Medications 2 or more		

**Multidisciplinary Heart Team Consultation -
Interventional Cardiology, Cardiothoracic Surgery, Advanced Heart Failure, Intensive Care**

Call for Organized Statewide Networks for Management of Acute Myocardial Infarction-Related Cardiogenic Shock

Figure. Proposed Statewide Organization of Acute Myocardial Infarction With Cardiogenic Shock (AMICS) Management Similar to Trauma Center Paradigm

Nathens et al Lancet 2004
Ko et al www.acc.org 2015
Shaefi et al JAHIA 2015
Tchantchaleishvili et al JAMA Surgery 2015
Engelman et al J Thorac Cardiovasc Surg 2017

AMERICAN
COLLEGE of
CARDIOLOGY

- Network of **partners** (spoke and hub)
 - EMS/ER (rapid triage/transport)
 - Access/communications
 - High-volume
- **Specialty care (center of excellence)**
- **Advanced (and integrated) therapies**
 - Common set of providers
 - **Quality (ongoing QI)**
 - **Data management**
 - **Administration, oversight, leadership...**
 - **Research**

Shock Team Activation

- “One-call” system
- **CCU Critical Care, CCU Cardiology, Cardiac Surgery, Interventional Cardiology, Advanced Heart Failure**
 - *Rapid, collaborative decision-making*
 - *“Bedside” or “Virtual” consultation*
 - *Consensus plan of care*
 - *Early MCS (as appropriate)*
 - *Hemodynamic-guidance*
 - *Formalized process*

AMERICAN
COLLEGE of
CARDIOLOGY

Conclusions

- There is increasing mortality in cardiogenic shock complicating myocardial infarction
- There is very low use of LV support
- IABP and inotropes increase mortality
- *Mechanical Hemodynamic Support* in Cardiogenic Shock Should be Used in All Patients!

AND SHOULD BE PLACED BEFORE PCI

AMERICAN
COLLEGE of
CARDIOLOGY

Questions?

AMERICAN
COLLEGE *of*
CARDIOLOGY