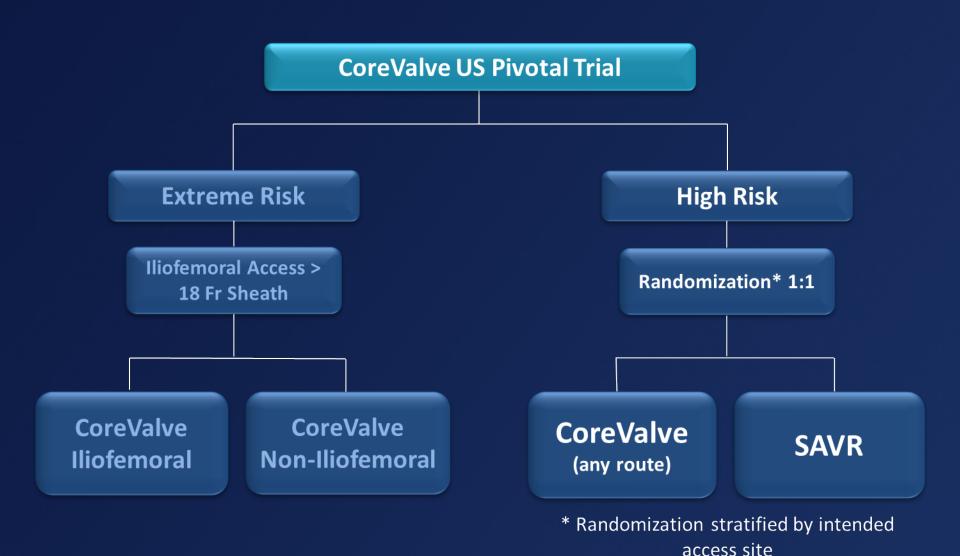
CoreValve US Pivotal Trial

A Randomized Comparison of Self-expanding Transcatheter and Surgical Aortic Valve Replacement in Patients with Severe Aortic Stenosis Deemed at Increased Risk for Surgery 2-Year Outcomes

Michael J Reardon, MD, FACC

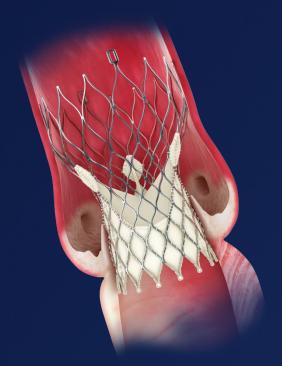
On Behalf of the CoreValve US Investigators

Presenter Disclosure Information

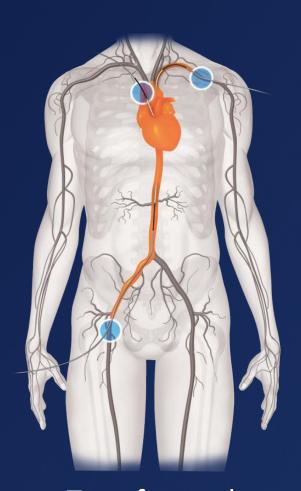

I serve on a Medical Advisory Board for Medtronic, Inc.

Medtronic personnel performed all statistical analyses and verified the accuracy of the data, and assisted in the graphical display of the data presented.

Background


- The randomized CoreValve trial demonstrated that transcatheter aortic valve replacement (TAVR) resulted in significantly lower mortality compared with surgical AVR at 1 year in patients who were at increased risk for surgery.
- Longer-term outcomes following TAVR with the selfexpanding CoreValve are necessary to further validate this survival advantage.

Pivotal Trial Design


Study Device and Access Routes

ACC 2015

4 Valve Sizes (23, 26, 29, 31 mm) (18-29 mm Annular Range)

Transfemoral
Subclavian
Direct Aortic

ACC 2015

Inclusion Criteria

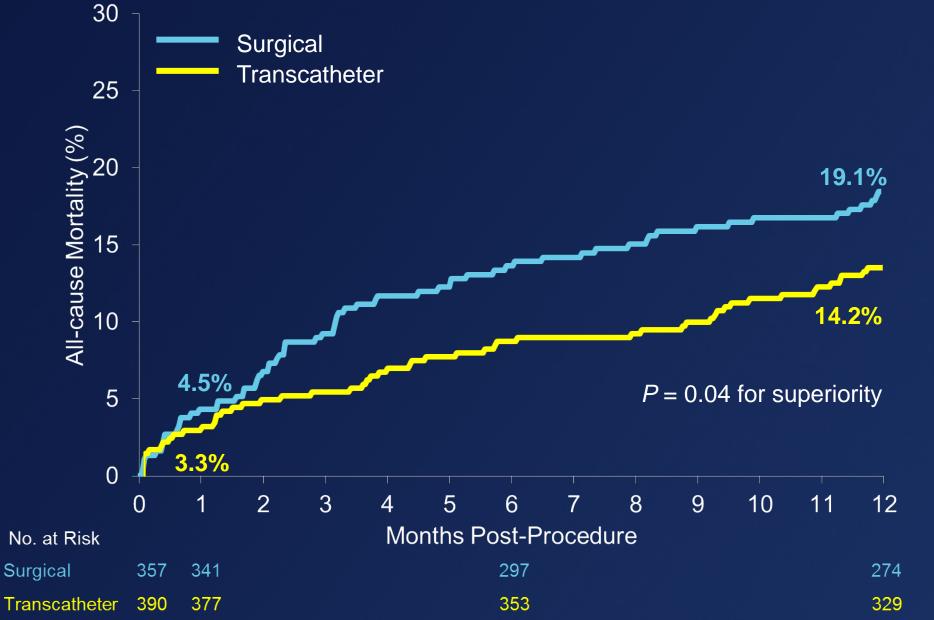
- NYHA functional class II or greater
- Severe aortic stenosis: AVA ≤0.8 cm² or AVAI ≤0.5 cm²/m² AND mean gradient >40 mm Hg or peak velocity >4 m/sec at rest or with dobutamine stress echocardiogram
- At increased surgical risk

ACC 2015

Exclusion Criteria

Clinical and Anatomic Exclusion Criteria Were:

- Recent active GI bleed (<3 months), stroke (<6 months), or MI (≤30 days)
- Any interventional procedure with bare metal stents (<30 days) and drug-eluting stents (<6 months)
- Creatinine clearance <20 mL/min
- Significant untreated coronary artery disease
- LVEF < 20%
- Life expectancy <1 year due to comorbidities
- Annulus <18 mm or >29 mm

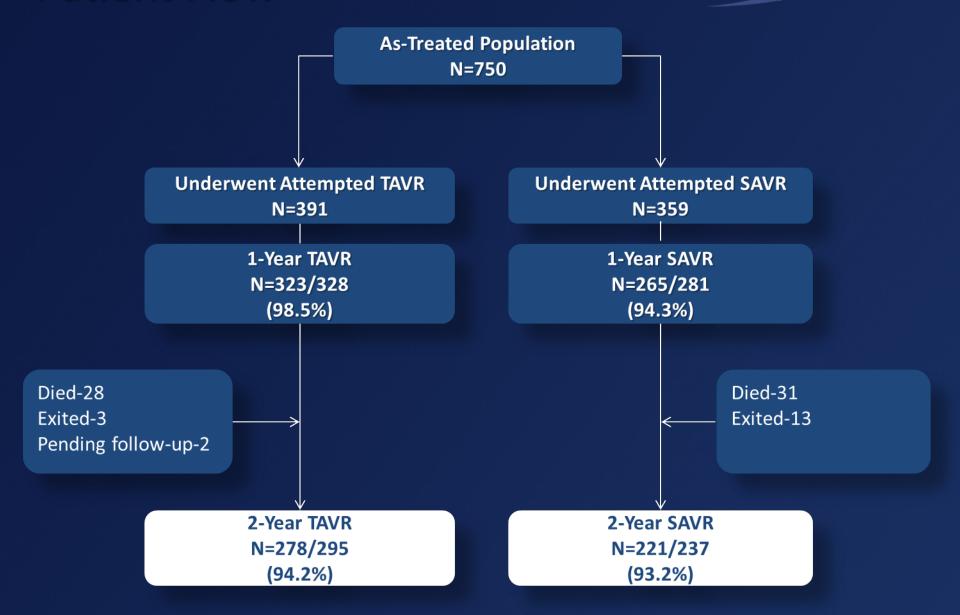

Primary Endpoint

Primary Endpoint: All-cause mortality at 1 year

Non-inferiority Testing: TAVR with the CoreValve bioprosthesis was non-inferior to SAVR for 1 year all-cause mortality with a 7.5% non-inferiority margin

Superiority Testing: If the primary endpoint was met at the 1-sided 0.05 level, a subsequent test for superiority was performed at the 1-sided 0.05 level

Primary Endpoint: 1 Year All-Cause Mortality

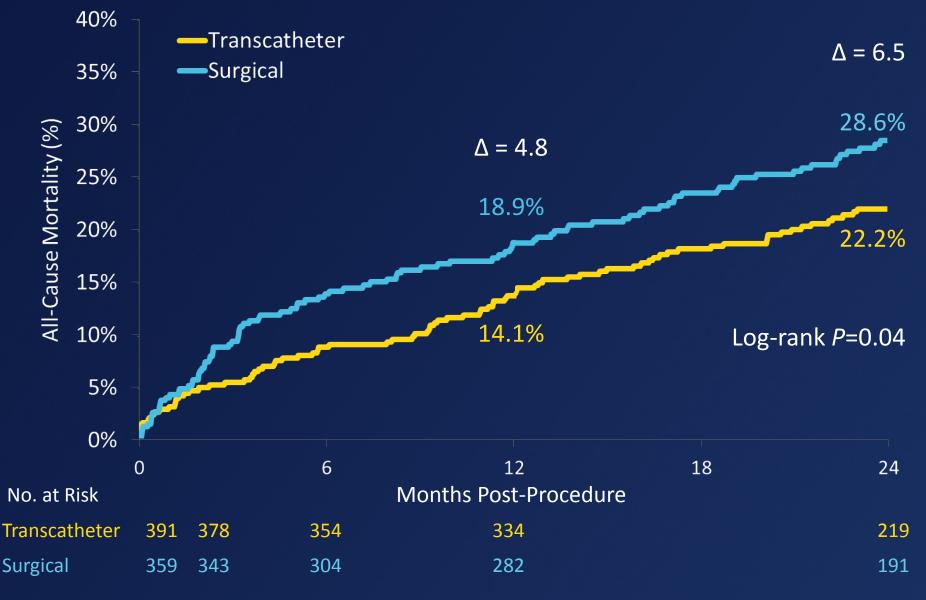


Study Methodology

- Median patient follow-up of 24 [TAVR, 24.4; SAVR, 24.2] months
- The as-treated cohort was used as the primary analysis population
- Event rates are presented as Kaplan-Meier estimates and comparisons based on two-tailed log-rank test
- All patient had NIHSS assessment at baseline, post-procedure, discharge, at each follow up and within 24h of an aortic reintervention
- All echoes evaluated by an independent echocardiographic core laboratory

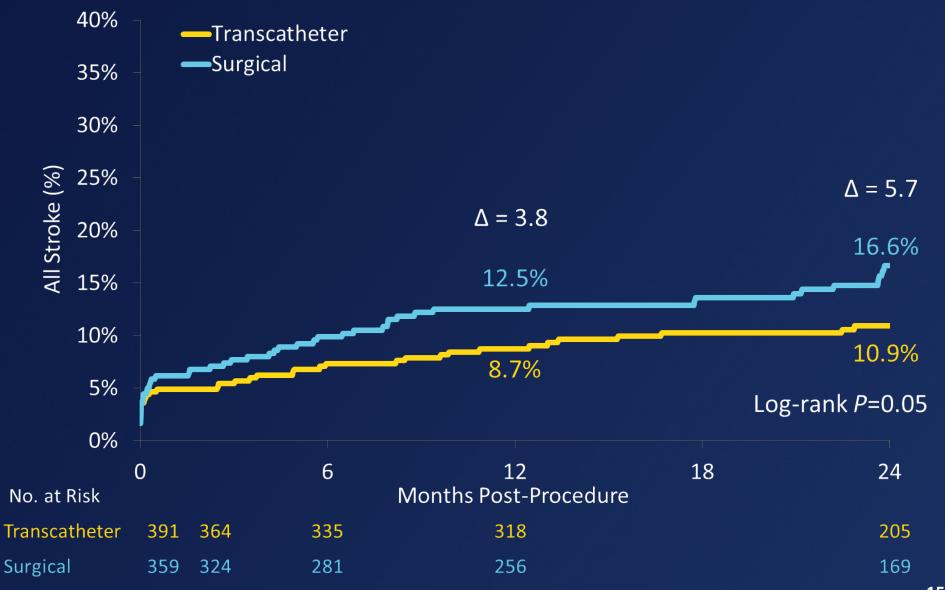
CoreValve US Pivotal Trial High Risk 2-Year Results

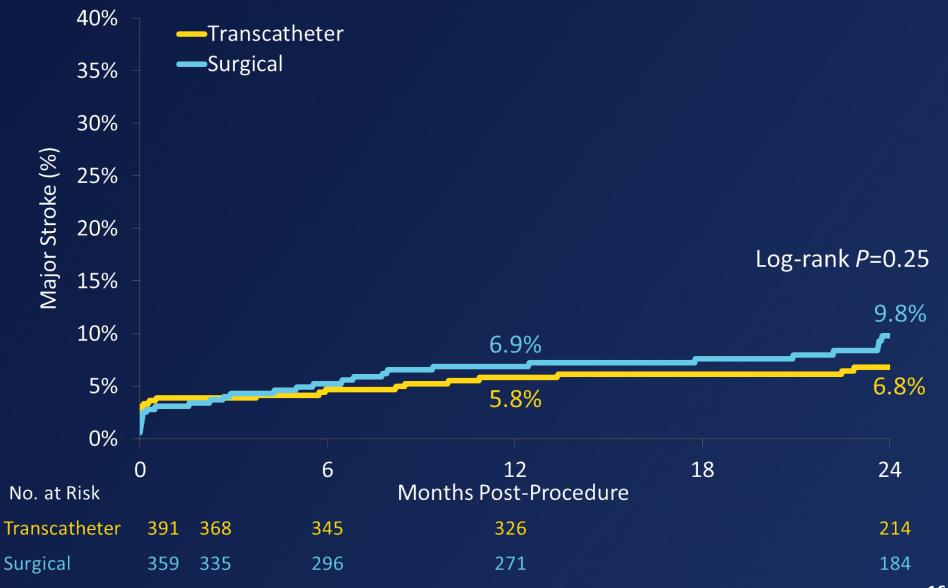
Patient Flow


Key Endpoints

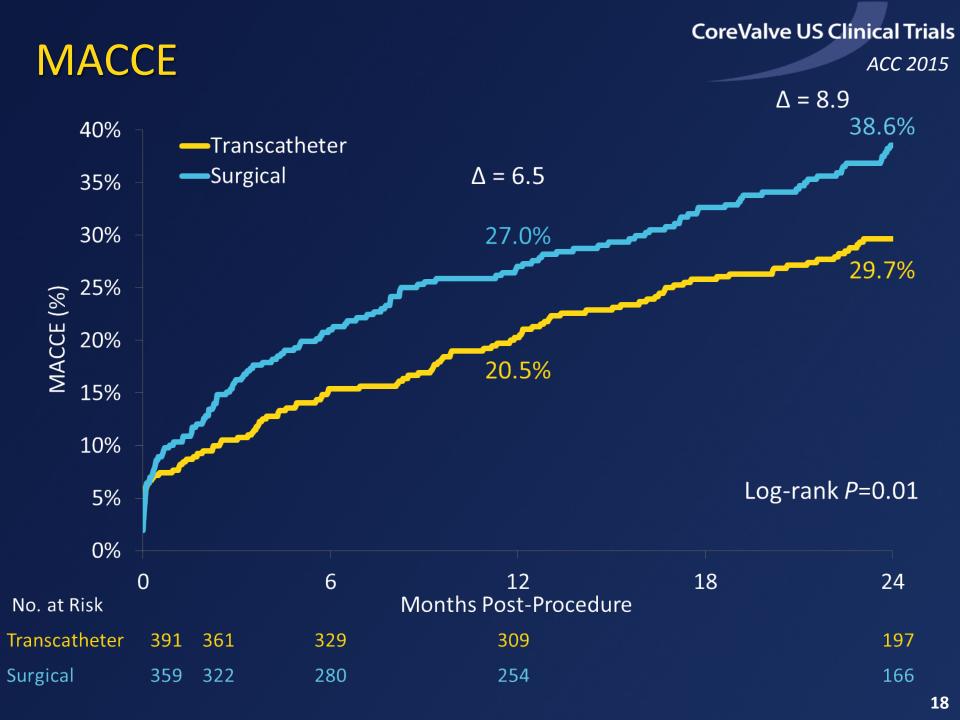
- 2-year mortality
- Neurological events
- MACCE
- Echocardiographic outcomes
- Also looked at;
 - Other clinical endpoints
 - Other adverse events

CoreValve US Clinical Trials


All-Cause Mortality







CoreValve US Clinical Trials ACC 2015

All-Cause Mortality or Major Stroke

Other Clinical Endpoints

CoreValve US Clinical Trials

ACC 2015

Events*	1 Month			1 Year			2 Years		
	TAVR	SAVR	Р	TAVR	SAVR	Р	TAVR	SAVR	Р
Vascular complications									
(major)	6.2	1.7	0.002	6.4	2.0	0.003	7.1	2.0	0.001
Pacemaker implant	20.0	7.1	<0.001	22.5	11.6	<0.001	25.8	12.8	<0.001
Bleeding (life threatening or									
disabling)	13.6	35.1	<0.001	16.5	38.4	<0.001	18.1	39.6	<0.001

16.4

33.2

< 0.001

19.5

6.2

34.9

15.1

31.0

11.7

New onset or

fibrillation

worsening atrial

< 0.001

< 0.001

< 0.001

Acute kidney injury
6.2 15.1 < 0.001 6.2 15.1 < 0.001

^{*} Percentages reported are Kaplan-Meier estimates and log-rank *P* values

CoreValve US Clinical Trials ACC 2015

Additional Adverse Events

Events*		1 Month			1 Year		2 Years		
	TAVR	SAVR	Р	TAVR	SAVR	Р	TAVR	SAVR	Р
Reintervention	0.8	0.0	0.10	2.2	0.0	0.008	2.5	0.4	0.02
Surgical	0.5	0.0	0.18	0.8	0.0	0.10	0.8	0.4	0.38
Percutaneous	0.3	0.0	0.34	1.4	0.0	0.04	1.7	0.0	0.02
Valve endocarditis	0.0	0.0		0.6	1.3	0.31	0.9	1.7	0.35
Valve thrombosis	0.0	0.0		0.0	0.0		0.0	0.0	

0.0

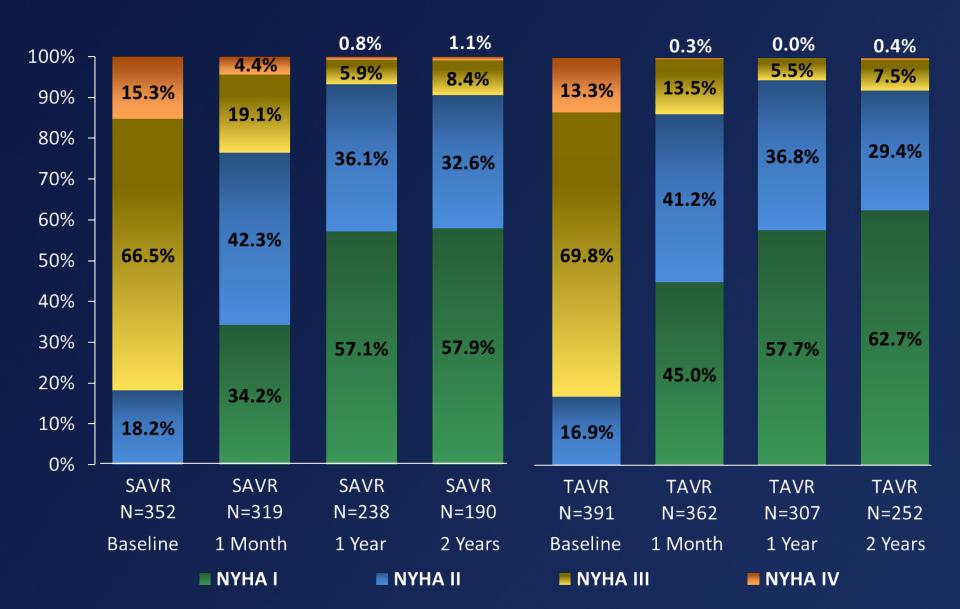
0.0

0.0

0.0

0.0

0.0

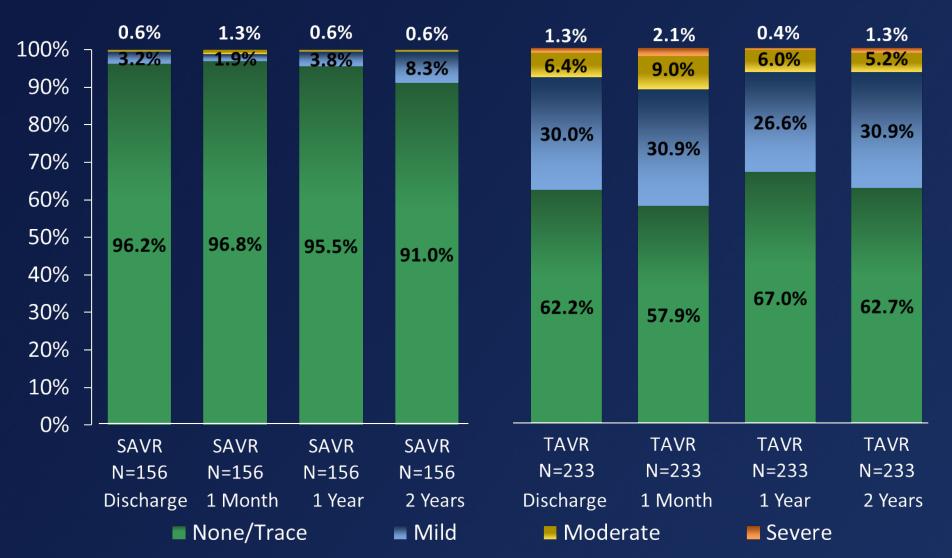

Embolization

^{*} Percentages reported are Kaplan-Meier estimates and log-rank P values

CoreValve US Clinical Trials

ACC 2015

NYHA Class


Echocardiographic Findings

ACC 2015

TAVR had significantly better valve performance over SAVR at all follow-up visits (P<0.001)

Paravalvular Regurgitation (Paired) ACC 2015

There was significantly lower PVL with SAVR over TAVR at each time point (P<0.001)

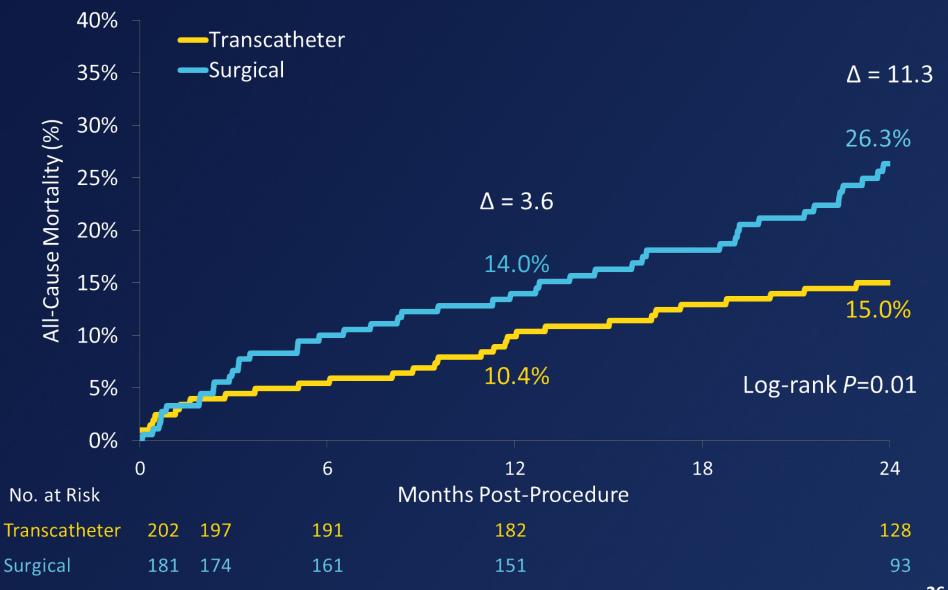
CoreValve US Clinical Trials

Subgroup Analysis for 2-Year Mortality

	All-Cause	Death at 2					
Subgroup	Years KM Rates		Hazard	P Value*			
	TAVR	SAVR					
Age							0.26
>85	27.0	29.7	0.87 (0.58, 1.29)		<u> </u>	-	
≤85	17.8	27.7	0.62 (0.40, 0.95)			_	
Gender							0.47
Male	24.0	28.9	0.82 (0.55, 1.21)			-	
Female	20.1	28.3	0.66 (0.43, 1.02)		_	-	
ВМІ							0.71
≤30	24.2	30.2	0.75 (0.54, 1.05)			-	
>30	17.0	25.1	0.66 (0.37, 1.21)			-	
LVEF							0.26
≤60	23.9	26.9	0.85 (0.59, 1.21)			•	
>60	19.4	31.7	0.60 (0.36, 0.98)	_	_		
Diabetes							0.97
No	23.9	31.1	0.72 (0.50, 1.03)				
Yes	18.9	25.6	0.71 (0.43, 1.18)				
			0.125	1 0.25	0.50	1.00	2.00
			Favors TAVR	0.23			vors SAVR

^{*}For interaction

Subgroup Analysis for 2-Year Mortality


	All-Cause	Death at 2						
Subgroup	Years K	M Rates	Hazard	Hazard Ratios (95% CI)				
	TAVR	SAVR						
Prior CABG							0.67	
No	24.1	30.6	0.77 (0.55, 1.07)					
Yes	17.6	24.5	0.66 (0.37, 1.18)			+		
PVD							0.82	
No	22.2	28.1	0.75 (0.51, 1.10)			-		
Yes	21.2	29.1	0.70 (0.44, 1.11)			-		
Hypertension							0.11	
No	21.1	59.8	0.29 (0.09, 0.95)			_		
Yes	22.2	27.4	0.78 (0.58, 1.05)		_	-		
STS Score							0.11	
≤7%	15.0	26.3	0.56 (0.35, 0.89)	-				
>7%	29.9	31.1	0.91 (0.63, 1.33)		_			
			0.125	0.25	0.50	1.00	2.00	
			Favors TAVR			Favo	ors SAVR	

^{*}For interaction

CoreValve US Clinical Trials

All-Cause Mortality STS ≤7%

ACC 2015

Conclusions

At 2 years for patients with symptomatic severe AS at increased risk of surgery;

- The superior survival seen at 1 year for TAVR over SAVR is maintained
- All stroke was less with TAVR over SAVR but major stroke showed no difference
- MACCE was significantly less with TAVR over SAVR
- Hemodynamics were superior for TAVR over SAVR at all time points without any structural valve failure
- Post-procedural AR showed a decrease in the TAVR group between 30 days and 1 year and this low level of moderate or severe PVL was maintained at 2 years
- TAVR was favored in every subgroup analysis

Implications

Recommendations	COR	LOE
Surgical AVR is recommended in patients who meet an indication for AVR (Section 3.2.3) with low or intermediate surgical risk	I	Α
For patients in whom TAVR or high-risk surgical AVR is being considered, members of a Heart Valve Team should collaborate to provide optimal patient care	I	С
TAVR is recommended in patients who meet an indication for AVR for AS who have a prohibitive surgical risk and a predicted post-TAVR survival >12 mo	I	В
TAVR is a reasonable alternative to surgical AVR in patients who meet an indication for AVR (Section 3.2.3) and who have high surgical risk (Section 2.5)	Πa	В
Percutaneous aortic balloon dilation may be considered as a bridge to surgical or transcatheter AVR in severely symptomatic patients with severe AS	Шь	С
TAVR is not recommended in patients in whom existing comorbidities would preclude the expected benefit from correction of AS	III: No Benefit	В

Nishimura RA, Otta CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2014;63:e57-185.

Implications

These data suggest that:

TAVR with the self-expanding valve should be considered the preferred treatment in patients with symptomatic severe AS at increased risk for surgery

Thank You

On Behalf of the CoreValve US Investigators