

<u>Randomized evaluation of routine follow-up</u> coronary<u>A</u>ngiography after percutaneous <u>Coronary intervention Trial (ReACT)</u>

Hiroki Shiomi, MD

Kyoto University Graduate School of Medicine

Takeshi Morimoto, MD, MPH; Shoji Kitaguchi, MD; Yoshihisa Nakagawa, MD; Katsuhisa Ishii, MD; Hiroshi Eizawa, MD; Yutaka Furukawa, MD; Masaru Tanaka, MD; Tetsuya Sumiyoshi, MD; and Takeshi Kimura, MD On behalf of the ReACT Investigators

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- The Research Institute for Production Development (Kyoto, Japan)
- Company Names

Background

 Previous clinical trials reported that routine FUCAG after PCI did not improve clinical outcome, but increased the rate of coronary revascularization due to "Oculostenotic reflex".

Trial Name	Design	Sample size	FU interval	Primary endpoint	Repeat Revascularization
BMS era					
Benestent II (JACC 1999)	RCT	N=827	1Y	MACE: AF>CF (N=50>27, P<0.01)	AF>CF HR:2.05 (1.24-3.37), P=0.003
BAAS (JACC 2001)	RCT	N=1058	3Y	MACE: AF>CF (23.2% vs 16.7%, P=0.01)	AF>CF HR 1.7 (1.3-2.3), P<0.001
DES era					
Taxus IV (JACC 2006)	Non-RCT	PES=556 BMS=566	1Y	TVR: AF>CF (13.7% vs 9.9%, P=0.06)	AF>CF TVR: adjusted HR 1.46, P=0.04
SPIRIT III (AJC 2012)	Non-RCT	EES=669 PES=333	3Y	MACE: AF=CF (12.0% vs 10.6%, P=0.64)	AF=CF TLR: 10.3% vs 7.5%, P=0.14

Background

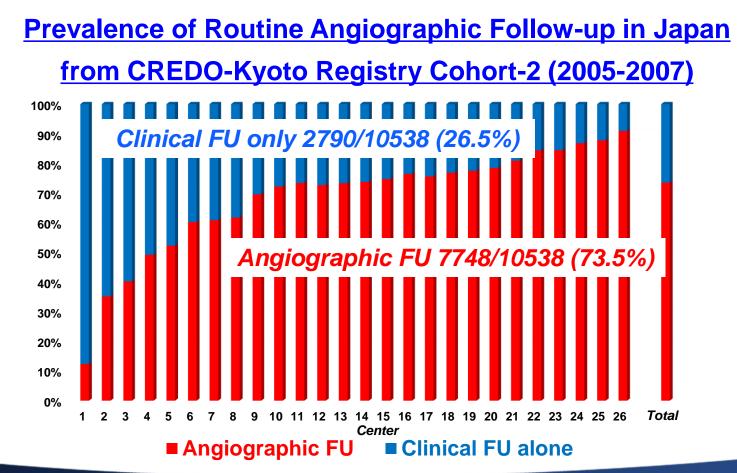
The Recommendations for FUCAG in the Guidelines

• The 2011 ACCF/AHA/SCAI Guidelines for PCI have already disregarded routine FUCAG even after PCI for left main CAD.

The 2005 PCI guideline recommended routine angiographic follow-up 2 to 6 months after stenting for unprotected left main CAD. However, because angiography has limited ability to predict stent thrombosis and the results of SYNTAX suggest good intermediate-term results for PCI in subjects with left main CAD, this recommendation was removed in the 2009 STEMI/PCI focused update.

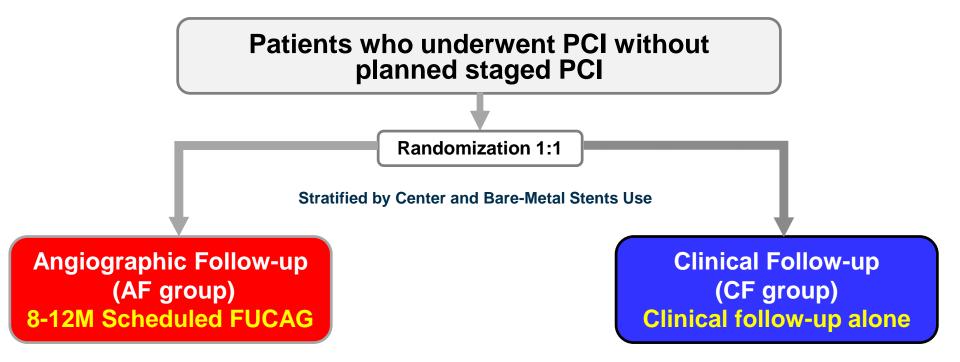
• The 2014 ESC/EACTS Guidelines on myocardial revascularization regarded routine FUCAG after high-risk PCI as Class IIb.

Recommendations	Class ^a	Level ^b	Ref ^c
Asymptomatic patients		_	
After high-risk PCI (e.g. unprotected LM stenosis) late (3– 12 months) control angiography may be considered, irrespective of symptoms.	llb	С	



Levine GN et al. Circulation 2011;124:e574-651 Windecker S et al. Eur Heart J 2014;35:2541-619

Background


- Previous studies evaluating routine angiographic follow-up in the DES era were conducted in the context of pivotal RCTs of DES.
- In Japan, routine FUCAG is still performed for many PCI patients as a usual care.

- Primary Endpoint: A composite of death/MI/stroke/ACS/HF
- Secondary Endpoints: Any coronary revascularization

Target lesion revascularization, etc

Study Organization

Steering Committee

Takeshi Kimura (PI), Kazuo Kimura, Shunichi Miyazaki, Tetsuya Sumiyoshi, Hiroyuki Daida, Atsushi Nakamura, Yutaka Furukawa, Yuichi Noguchi, Yoshihisa Nakagawa, Yuji Ikari, Kojiro Awano, Shoji Kitaguchi, Haruo Hirayama Issei Komuro, Haruo Kamiya.

- Clinical Event Committee
 Kazushige Kadota, Hiroki Shiomi
- Statistical Analysis
 Takeshi Morimoto
- Date Safety Monitoring Board
 Takaaki Isshiki, Koichi Nakao
- Coordinating Center

Research Institute for Production Department, Kyoto, Japan

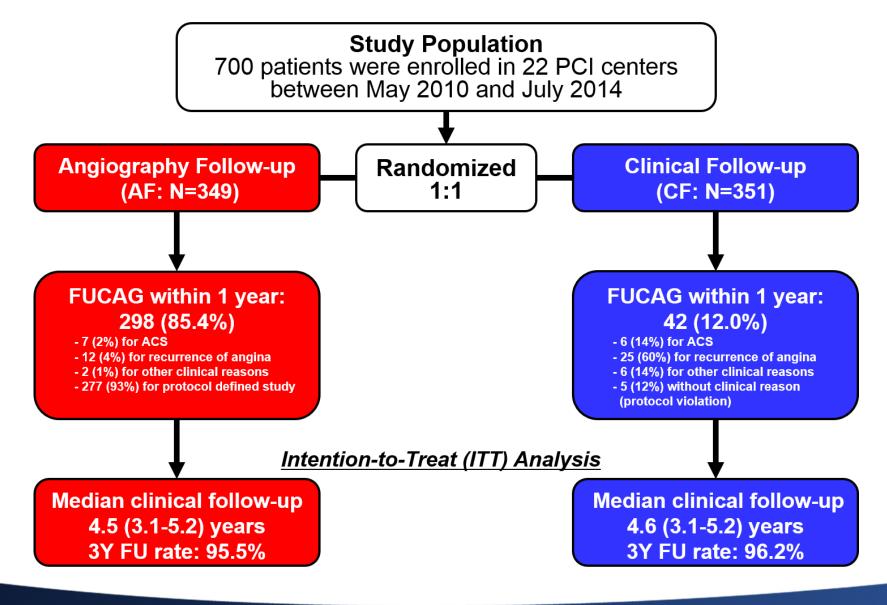
Participating Centers

- Yokohama City University Medical Center: Kazuo Kimura, Kiyoshi Hibi
- Kansai Denryoku Hospital: Katsuhisa Ishii, Kazuaki Kataoka
- Kyoto University Hospital: Takeshi Kimura, Hiroki Shiomi
- Kindai University Nara Hospital: Manabu Shirotani
- Kindai University: Shunichi Miyazaki
- Koto Memorial Hospital: Teruki Takeda
- National Cerebral and Cardiovascular Center: Satoshi Yasuda, Kazuhiro Nakao
- National Hospital Organization Kyoto Medical Center: Masaharu Akao, Mitsuru Ishii
- Saiseikai Shimonoseki General Hospital: Eiji Momona
- Sakakibara Heart Institute: Tetsuya Sumiyoshi, Itaru Takamisawa
- Juntendo University Hospital: Hiroyuki Daida, Katsumi Miyauchi
- New Tokyo Hospital: Satoru Mimoto, Sunao Nakamura
- Kobe City Medical Center General Hospital: Yutaka Furukawa
- Nishi-Kobe Medical Center: Shintaro Matsuda, Hiroshi Eizawa
- Shizuoka City Shizuoka Hospital: Akinori Takizawa, Koichiro Murata
- Osaka Red Cross Hospital: Masaru Tanaka, Tsukasa Inada
- Tsukuba Medical Center Hospital: Yuichi Noguchi
- Tenri Hospital: Yoshihisa Nakagawa, Makoto Motooka
- Tokai University: Yuji Ikari
- Kitaharima Medical Center: Kojiro Awano
- Hirakata Kohsai Hospital: Yoshisumi Haruna, Shoji Kitaguchi
- Nagoya Daini Red Cross Hospital: Haruo Hirayama, Mamoru Nanasato

Power Calculation and Amendment of Protocol

- Original Sample Size Calculation
 - Estimated event rate at 3 year: 25% in CF group
 - Sample size: N=3300
 - 15% relative reduction of the primary endpoint in AF group
 - α= 0.05 (2-tailed), 1-β= 0.80

• Amendment of Protocol (June, 2014)


Due to the enrollment rate slower than expected with longer followup interval, the target sample size was amended to 700 patients with minimum of 1.5 year follow-up (estimated median FU: 5 years).

ReACT Patient Flow Chart

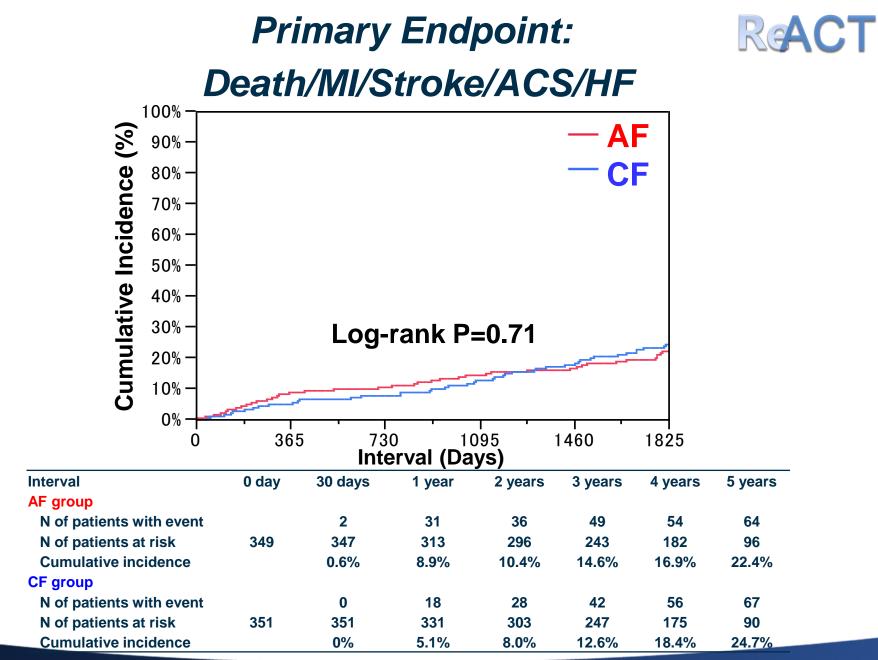
RACT

2016

Patient Characteristics

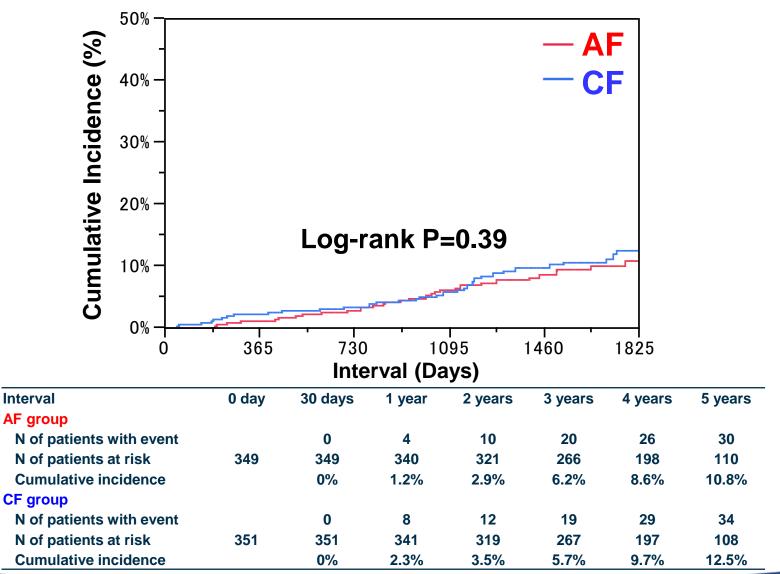
	AF group (N=349)	CF group (N=351)
Age – years	68.9±10.0	68.2±9.1
Male sex	260 (75%)	291 (83%)
Body mass index	24.3±3.4	24.2±3.2
Hypertension	252 (72%)	275 (78%)
Diabetes mellitus	141 (40%)	166 (47%)
Dyslipidemia	267 (77%)	277 (79%)
Hemodialysis	13 (3.7%)	12 (3.4%)
Prior myocardial infarction	56 (16%)	62 (18%)
Prior PCI	106 (30%)	122 (35%)
Prior Stroke	25 (7.2%)	36 (10%)
Past history of heart failure	18 (5.2%)	23 (6.6%)
Atrial fibrillation	19 (5.4%)	28 (8.0%)

Patient Characteristics


	AF group (N=349)	CF group (N=351)
Clinical characteristics		
Stable CAD	222 (64%)	221 (63%)
Unstable angina	57 (16%)	62 (18%)
Acute myocardial infarction	70 (20%)	68 (19%)
Peripheral artery disease	43 (12%)	41 (12%)
Multivessel disease	144 (41%)	150 (43%)
Target-vessel location		
LMCA	15 (4.3%)	12 (3.4%)
LAD	193 (55%)	195 (56%)
LCx	96 (28%)	85 (24%)
RCA	122 (35%)	123 (35%)
Bypass graft	3 (0.9%)	3 (0.9%)

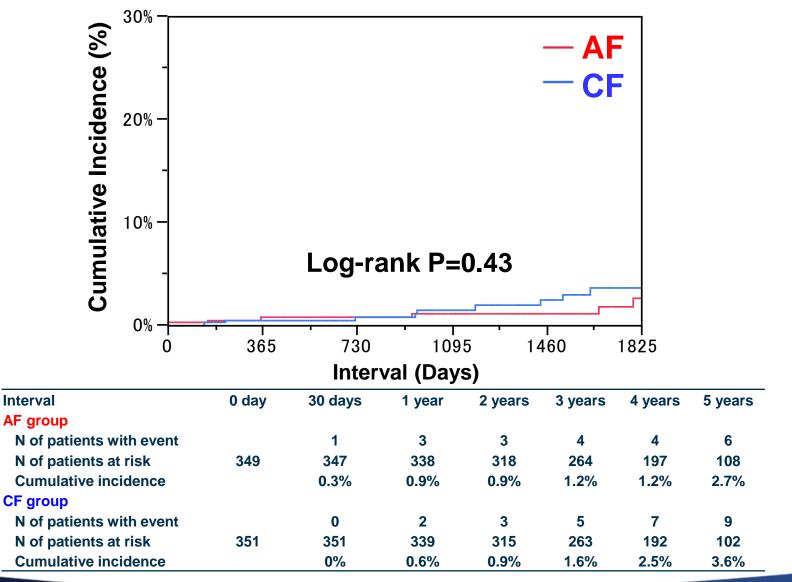
Lesion and Procedural Characteristics RACT

	AF group (N=349)	CF group (N=351)
Target of STEMI culprit lesion	57 (16%)	53 (15%)
Target of bifurcation lesion	119 (34%)	107 (30%)
Target of chronic total occlusion	23 (6.7%)	16 (4.6%)
Target of restenosis lesion	29 (8.3%)	28 (8.0%)
No. of treated lesions per patient	1.30±0.62	1.27±0.54
No. of stents used (per patient)	1.54±0.97	1.44±0.82
Total stent length - mm (per patient)	32.9±24.5	31.1±21.1
Drug-eluting stents use	298 (86%)	298 (87%)

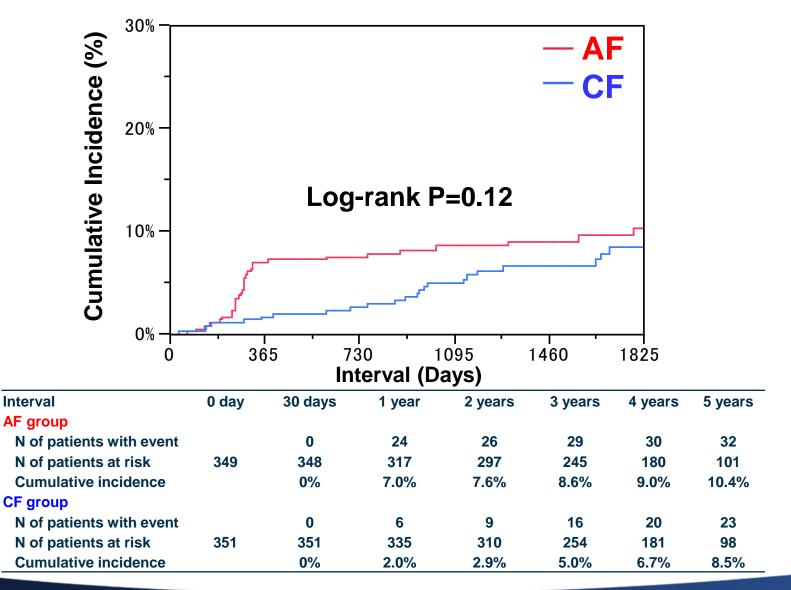


tct2016

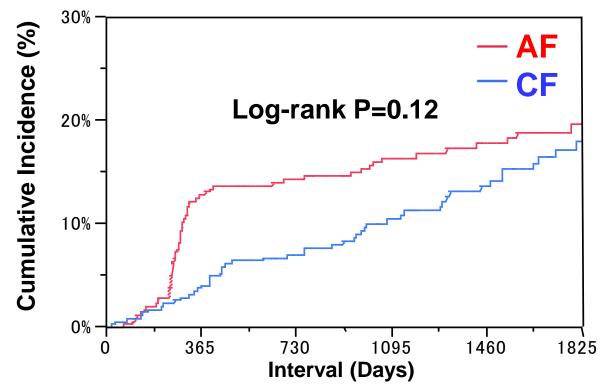
All-cause Death


RACT

Myocardial Infarction


RACT

Target Lesion Revascularization


RACT

Any Coronary Revascularization

RACT

Interval	0 day	30 days	1 year	2 years	3 years	4 years	5 years
AF group							
N of patients with event		0	44	49	55	58	61
N of patients at risk	349	348	297	275	221	164	93
Cumulative incidence		0%	12.8%	14.3%	16.4%	17.8%	19.6%
CF group							
N of patients with event		1	13	24	34	41	48
N of patients at risk	351	350	328	295	239	165	89
Cumulative incidence		0.3%	3.8%	7.0%	10.5%	13.7%	18.1%

tct2016

Subgroup Analysis for the Primary Endpoint

Subgroups		N (AF/CF)	AF versus CF	HR(95%CI)	P value	Interaction P value
Diabetes mellitus	Yes	144/169	⊢ ●-1	0.80 (0.48-1.31)	0.37	0.29
	No	205/182	⊢● -1	1.14 (0.71-1.84)	0.58	0.29
Restenotic lesion	Yes	30/30	⊢ ●'	1.36 (0.52-3.58)	0.53	0.38
	No	319/321	H e H	0.88 (0.61-1.27)	0.49	0.38
LMCA disease	Yes	15/13	⊢	0.34 (0.08-1.42)	0.14	0.10
	No	334/338	⊢∳ 1	0.99 (0.70-1.41)	0.97	0.10
сто	Yes	21/15	⊢	0.31 (0.06-1.72)	0.18	0.10
	No	328/336		0.99 (0.70-1.40)	0.95	0.19
Bifurcation lesion	Yes	120/107	⊢ ∎-1	0.82 (0.47-1.45)	0.50	0.62
	No	229/244	⊢∳ +	0.98 (0.65-1.50)	0.93	0.02
Multivessel disease	Yes	69/64	⊢♦ −1	0.93 (0.47-1.84)	0.84	0.99
	No	280/287	⊢ ∳ -	0.93 (0.63-1.37)	0.71	0.99
Stent length>=40mm	Yes	96/91	⊢ ●-1	0.76 (0.44-1.32)	0.33	0.29
	No	253/260	- -	1.07 (0.70-1.65)	0.75	0.29
High-risk group	Yes	176/154	⊢ ∎-1	0.86 (0.55-1.34)	0.50	0.79
	No	173/197	-	0.97 (0.58-1.62)	0.90	0.79
			0.01 0.1 1 10 AF Better CF Bette	r		

High-risk group with at least 1 risk feature such as LMCA disease, bifurcation lesion, multivessel disease, and total stent length>= 40mm

Limitations

 Underpowered to detect modest differences in the primary endpoint due to the reduced final sample size and the actual event rate lower than anticipated.

 Unable to address the role of routine angiographic follow-up in the high-risk subgroups such as left main or multi-vessel CAD.

Conclusions

 No clinical benefits were observed for routine FUCAG after PCI and early revascularization rates were increased within this approach in the current trial. Thus, routine FUCAG cannot be recommended as a clinical strategy.

 However, the present study was underpowered to detect modest benefits (or harm) of routine FUCAG, and largerscale trials (especially in high-risk patients) are warranted to definitively address this issue.

