

LOWER RISK OF CARDIOVASCULAR EVENTS AND DEATH ASSOCIATED WITH INITIATION OF SGLT-2 INHIBITORS VERSUS OTHER GLUCOSE LOWERING DRUGS - REAL WORLD DATA ACROSS THREE MAJOR WORLD REGIONS WITH MORE THAN 400,000 PATIENTS: THE CVD-REAL 2 STUDY

Mikhail Kosiborod, MD on behalf of the CVD-REAL Investigators and Study Group

Lower Risk of Cardiovascular Events and Death Associated with Initiation of SGLT-2 Inhibitors versus Other Glucose Lowering Drugs - Real World Data Across Three Major World Regions with More Than 400,000 Patients: The CVD-REAL 2 Study

Mikhail Kosiborod¹, Carolyn Su Ping Lam ², Shun Kohsaka³, Dae Jung Kim⁴, Avraham Karasik⁵, Jonathan Shaw⁶, Navdeep Tangri⁷, Su-Yen Goh⁸, Marcus Thuresson⁹, Hungta Chen¹⁰, Filip Surmont¹¹, Niklas Hammar^{12,13}, Peter Fenici¹⁴ on behalf of the CVD-REAL Investigators and Study Group

¹Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA; ²National Heart Centre, Singapore and SingHealth Duke-NUS, Singapore; ³Keio University School of Medicine, Tokyo, Japan; ⁴Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea; ⁵Tel Aviv University, Ramat Aviv, and Maccabi Healthcare Israel; ⁶Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; ⁷Department of Medicine, University of Manitoba, Winnipeg MB, Canada; ⁸Singapore General Hospital, Singapore; ⁹Statisticon AB, Uppsala, Sweden; ¹⁰AstraZeneca, Gaithersburg, MD, USA; ¹¹AstraZeneca, Luton, UK; ¹²Karolinska Institutet, Stockholm, Sweden; ¹³AstraZeneca, Gothenburg, Sweden; ¹⁴AstraZeneca, Cambridge, UK

- Outcomes trials demonstrated lower risks of cardiovascular events with sodium glucose cotransporter-2 inhibitors (SGLT-2i) in patients with type 2 diabetes (T2D), most with established cardiovascular disease (CVD)^{1,2}
- CVD-REAL a large, international pharmaco-epidemiologic study demonstrated that SGLT-2i were associated with similar CV effects across compounds, and in a much broader population of patients with T2D seen in clinical practice³
 - However, those analyses focused on all-cause death (ACD) and heart failure, and only included patients from the United States and Europe

- Most patients with T2D reside outside the US and Europe (primarily in Asia-Pacific and the Middle East)¹
- There are important differences in patient characteristics, treatment patterns, and types
 of adverse CVD events experienced by patients in these world regions (e.g. stroke being
 much more common in Asia²)
- Data from large, well-designed comparative effectiveness studies evaluating CV outcomes with various T2D therapies has been limited outside the US and Europe

1. International Diabetes Federation. IDF Diabetes Atlas: 8th edition, 2017; 2. Ueshima H, et al. Circulation 2008;118:2702-9.

 To evaluate the relationship between the initiation of SGLT-2i vs. other glucose-lowering drugs (oGLD) and a broad range of CV outcomes (allcause death, HHF, MI and stroke) in patients with T2D from three major world regions: Asia-Pacific, Middle East, and North America

Countries and Data Sources

Australia – National Diabetes Services Scheme (NDSS)*

Canada – Manitoba Population Health Research Data Repository

Israel – The Maccabi Health Management Organization

Japan – Medical Data Vision

Singapore – SingHealth Diabetes Registry

South Korea – National Health Insurance Service (NHIS)

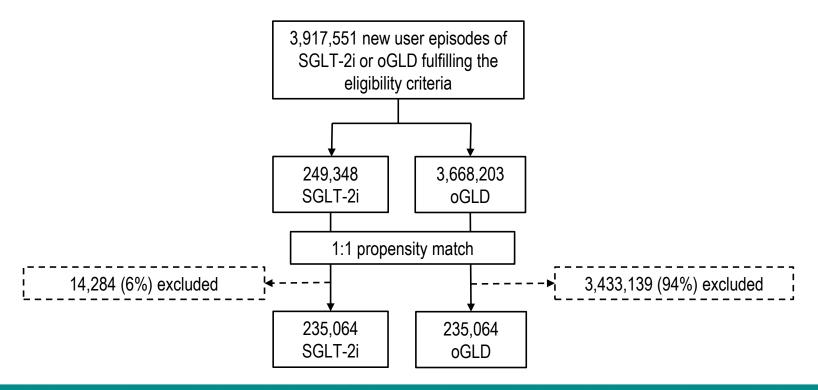
^{*}Included in the ACD analysis only

Inclusion/Exclusion Criteria

- Inclusion
 - New users of SGLT-2i or oGLD
 - Established type 2 diabetes on or prior to the index date
 - ≥18 years old
 - >1 year historical data available prior to the index date
- Exclusion
 - Patients with type 1 diabetes or gestational diabetes

Outcomes

- All-cause death
- Hospitalization for heart failure (HHF)
- All-cause death or HHF
- Myocardial infarction (MI)
- Stroke



- All episodes of initiation of an SGLT-2i or oGLD were eligible for inclusion
- Propensity score for initiating SGLT-2i was developed, and episodes of SGLT-2i and oGLD initiation were matched 1:1 in each country
- Cox proportional hazards models were used for each outcome
- Hazard ratios for each country were pooled for an overall summary estimate
- Primary analysis was intent-to-treat (ITT) follow up regardless of whether the index treatment was discontinued
- Multiple subgroup and sensitivity analyses used to evaluate stability of findings

Patient Population

Baseline Characteristics

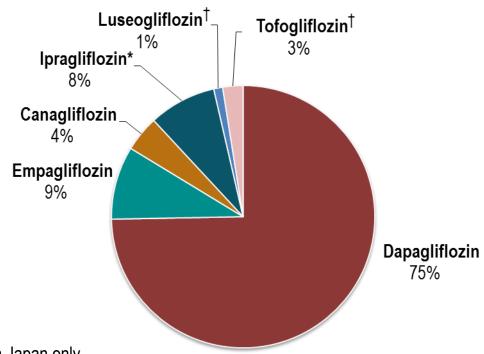
Baseline characteristic, n (%)	SGLT-2i (N=235,064)	oGLD (N=235,064)	Standardized Difference	
Age, years, mean (SD)	57 (12)	57 (13)	0.4%	
Women	105,843 (45)	106,863 (46)	0.9%	
Established cardiovascular disease*	59,222 (27)	56,576 (26)	2.7%	
Acute myocardial infarction	7,624 (3)	7,479 (3)	0.4%	
Unstable angina	12,480 (6)	12,235 (6)	0.5%	
Heart failure	15,151 (7)	14,741 (7)	0.7%	
Atrial fibrillation	6,026 (3)	5,843 (3)	0.5%	
Stroke	20,983 (10)	20,153 (9)	1.3%	
Peripheral arterial disease	2,446 (1)	2,384 (1)	0.3%	
Microvascular disease†	116,370 (53)	114,630 (52)	1.6%	
Chronic kidney disease	4,211 (2)	4,021 (2)	0.6%	

^{*}Myocardial infarction, unstable angina, stroke, heart failure, transient ischemic attack, coronary revascularization or occlusive peripheral artery disease; †diabetic mono-/polyneuropathy, diabetic eye complications, diabetic foot/peripheral angiopathy, or diabetic kidney disease

Baseline Therapies

Baseline therapies, n (%)	SGLT-2i (N=235,064)	oGLD (N=235,064)	Standardized Difference
Cardiovascular thera	apies		
Antihypertensive therapy [†]	147,166 (63)	145,014 (62)	1.9%
Loop diuretics	16,451 (7)	16,100 (9)	0.6%
Thiazides	17,608 (8)	17,173 (7)	0.7%
ACE inhibitors	20,199 (9)	20,062 (9)	0.2%
ARBs	109,620 (47)	109,347 (47)	0.2%
Statins	153,694 (65)	153,466 (65)	0.2%
Beta-blockers	44,786 (19)	43,947 (19)	0.9%
Aldosterone antagonists	6,719 (3)	6,548 (3)	0.4%

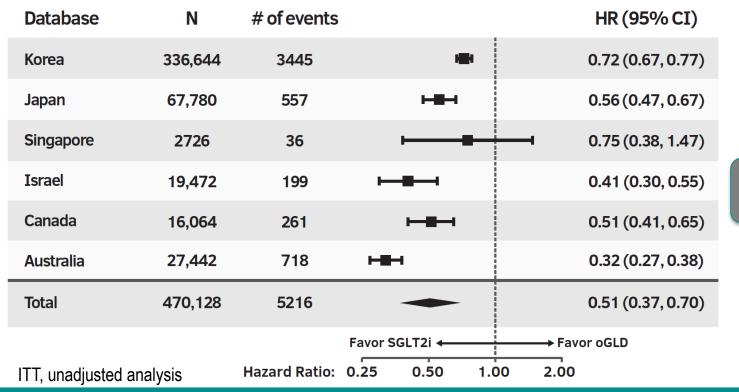
 † Includes angiotensin converting enzyme inhibitors, angiotensin receptor blockers, Ca2+ channel blockers, β -blockers, thiazides; ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blockers


Baseline therapies, n (%)	SGLT-2i oGLD (N=235,064) (N=235,064)		Standardized Difference	
Glucose-lowering the	erapies			
Metformin	173,783 (74)	175,266 (75)	1.4%	
Sufonylurea	121,209 (52) 119,466 (51)		1.5%	
DPP-4 inhibitor	130,674 (56) 128,096 (55)		2.2%	
Thiazolidinedione	30,503 (13)	29,573 (13)	1.2%	
GLP-1 receptor agonist	6,163 (3)	6,022 (3)	0.4%	
Insulin	46,486 (20)	44,480 (19)	2.2%	

DPP-4, Dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1

Use of SGLT-2i: Proportion of Exposure Time

*In South Korea and Japan; †In Japan only.



RESULTS

All-Cause Death

P-value for SGLT2i vs. oGLD: p<0.001

Heterogeneity p-value: p<0.001

Hospitalization for Heart Failure

Database	N	# of events		HR (95% CI)
Korea	336,644	5149	1984	0.87 (0.82, 0.92)
Japan	67,780	565	⊢⊞ -1	0.75 (0.63, 0.89)
Singapore	2726	67		0.62 (0.38, 1.02)
Israel	19,472	128	⊢= →	0.53 (0.37, 0.75)
Canada	16,064	88		0.36 (0.24, 0.56)
Total	442,686	5997	-	0.64 (0.50, 0.82)
			Favor SGLT2i ←	→ Favor oGLD
ITT, unadjusted an	nalysis	Hazard Ratio:	0.25 0.50 1.00	2.00

P-value for SGLT2i vs. oGLD: p<0.001

Heterogeneity p-value: p<0.001

Composite of All-Cause Death or HHF

Database	N	# of events		HR (95% CI)	
Korea	336,644	7990	•	0.81 (0.78, 0.85)	
Japan	67,780	1061	HBH	0.65 (0.57, 0.74)	
Singapore	2726	93	⊢= →	0.62 (0.41, 0.95)	
Israel	19,472	313	⊢= →	0.45 (0.36, 0.57)	
Canada	16,064	331	⊢= ⊣	0.48 (0.39, 0.59)	
Total	442,686	9788	•	0.60 (0.47, 0.76)	
			Favor SGLT2i ←	Favor oGLD	
ITT, unadjusted a	nalysis	Hazard Ratio:	0.25 0.50 1.00	2.00	

P-value for SGLT2i vs. oGLD: p<0.001

Heterogeneity p-value: p<0.001

Myocardial Infarction

Database	N	# of events		HR (95% CI)
Korea	336,644	1901	HEH	0.81 (0.74, 0.89)
Japan	67,780	91	ı— =	0.75 (0.50, 1.14)
Singapore	2726	70	· · · · · · · · · · · · · · · · · · ·	0.79 (0.49, 1.27)
Israel	19,472	59	ı <u> </u>	1.09 (0.66, 1.80)
Canada	16,064	128		0.75 (0.56, 1.01)
Total	442,686	2249	*	0.81 (0.74, 0.88)
			Favor SGLT2i ← → Fa	avor oGLD
ITT, unadjusted a	nalysis	Hazard Ratio:	0.25 0.50 1.00 2.0	0

P-value for SGLT2i vs. oGLD: p<0.001

Heterogeneity p-value: p=0.787

Stroke

Database	N	# of events		HR (95% CI)	
Korea	336,644	5972	•	0.82 (0.78, 0.86)	
Japan	67,780	272	⊢= →	0.66 (0.52, 0.84)	
Singapore	2726	34	←■	0.34 (0.15, 0.75)	P-value for
Israel	19,472	116	⊢=	0.66 (0.47, 0.94)	SGLT2i vs. oGLD: p<0.001
Canada	16,064	45		0.55 (0.32, 0.94)	
Total	442,686	6439	-	0.68 (0.55, 0.84)	
			Favor SGLT2i ←	→ Favor oGLD	
ITT, unadjusted a	nalysis	Hazard Ratio:	0.25 0.50 1.00	2.00	Heterogeneity p-value: p=0.029

Subgroup Analyses – Outcomes With and Without CVD at Baseline

Event		Event rate	HR (95% CI)	P-value interaction
All-cause death	Prior CVD No Prior CVD	1.98 0.70	H≣+1 ■1	0.198
Heart Failure	Prior CVD No Prior CVD	3.73 0.60	⊢= ⊢	0.738
HHF or ACD	Prior CVD No Prior CVD	5.31 1.23	HB-1	0.303
MI	Prior CVD No Prior CVD	1.15 0.30	HBH HBH	0.595
Stroke	Prior CVD No Prior CVD	3.73 0.74	 	0.299
		Hazard Ratio:	Favor SGLT2i	Favor oGLD

Limitations

- Possibility of residual, unmeasured confounding cannot be definitively excluded
- Mortality data were available only from inpatient settings in Japan and Singapore
 - However, most fatal events in these countries occur in the hospital
 - Sensitivity analyses excluding data from Japan and Singapore produced similar results
- Did not examine safety
- SGLT-2i experience in real-world practice is still relatively short
 - Longer-term follow up required to examine whether effects are sustained over time

- Large, international study across three major world regions, over 400,000 patients and large number of events for each outcome
- Initiation of SGLT-2i vs. oGLDs associated with lower risk of death, HHF, MI and stroke
 - Directionality of associations generally consistent across countries
 - Results stable in multiple sensitivity analyses and across patient subgroups
- Findings suggest that CV effects of SGLT-2i may extend across patient ethnic and racial backgrounds, geographic regions, as well as CV risk continuum

Manuscript now published in JACC

Kosiborod M, Lam CSP, Kohsaka S, *et al.* Lower Cardiovascular Risk Associated with SGLT-2i in >400,000 Patients: The CVD-REAL 2 Study. *J Am Coll Cardiol* (in press). DOI: 10.1016/j.jacc.2018.03.009

CVDREAL²

Acknowledgements

We would like to that the CVD-REAL Investigators and Study Group

Executive Scientific Committee (Academic Members and Investigators): Mikhail Kosiborod, MD, Matthew A. Cavender, MD MPH, Alex Z. Fu, PhD, John P. Wilding MD, PhD, Kamlesh Khunti, MD PhD, Anna Norhammar, MD, Kåre Birkeland, MD PhD, Marit Eika Jørgensen, MD PhD, Cand, med, Reinhard W. Holl MD PhD, Carolyn SP Lam, MD, Extended publications committee: Hanne Løvdal Gulseth, MD, PhD, Bendix Carstensen, PhD, Esther Bollow, Josep Franch-Nadal, MD, PhD, Luis Alberto García Rodríguez, MD, Avraham Karasih, MD PhD, Navdeep Tangri MD PhD, Shun Kohsaka MD, Dae Jung Km MD, Jorathan Shaw MD, Suzanne Arnold, MD, MHA, Su-Yen Goh MD. Executive Scientific Committee (AstroZeneca Members): Niklas Hammar, PhD, Peter Fenici, MD, PhD, Johan Bodegard, MD PhD, Hungta Chen PhD, Filip Surmont MD, Kyle Nahrebne, MSc. Study Core Team (AstroZeneca Members): Betina T. Blak, MSc PhD, Eric T. Wittbrodt, PharmD, MPH, Matthias Saathoff, PhD, Yusuke Noguchi, BS, MBA, Donka Tan, Maro Williams, Hye Von Lee, Maya Greenboom, Oksana Kaidanovich-Beilin. External Investigators and Analysts: Khung Keong Yeo MBBS, Yong Mong Bee MBBS, Joan Khoo MBBS, Agnes Koong MBBS, Yee How Lau, Fei Gao, Wee Boon Tan MBBS, Hanis Abdul Kadir BSc, Kyoung Hwa Ha, PhD, Jinhee Lee, MS, Gabriel Chodick, PhD, Cheli Melzer Cohen, MSc, Reid Whitlock, BEd, BSc, MSc, Lucia Cea Soriano, PharmD, PhD, Oscar Fernándex Cantero, Ellen Riehle, MPH, Jennie Ilomaki PhD, Dianna Magliano, PhD.

Editorial support provided by Nicola Truss PhD, inScience Communications, Springer Healthcare

Study supported by AstraZeneca

