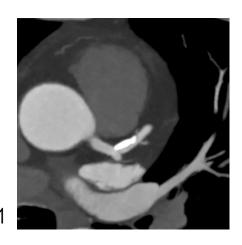
Clinical Outcomes Using Coronary CT Angiography and FFR_{CT} Guided Management of Stable Chest Pain Patients


Bjarne L. Nørgaard, Christian J. Terkelsen, Ole N. Mathiassen, Erik L. Grove, Hans Erik Bøtker, Erik Parner, Jonathon Leipsic, Flemming H. Steffensen, Anders H. Riis, Kamilla Pedersen, Evald H. Christiansen, Michael Mæng, Lars R. Krusell, Steen D. Kristensen, Ashkan Eftekhari, Lars Jakobsen, Jesper M. Jensen

Aarhus University Hospital, Aarhus, Denmark

Background

Coronary CT Angiography:

- Can accurately exclude the presence of CAD¹
- Prognostic implications²
- Cannot determine the physiologic significance of lesions³

Non-invasive strategies are needed to identify those patients with CAD who may benefit from cardiac catherization and those who do not require further testing

¹Abdulla J et al, EHJ 2007; ²Nielsen LH et al, EHJ 2017; ²Xie JX et al, iJACC 2018; ³Meijboom WB et al, JACC 2008; ³Norgaard BL et al, JACC 2014

Background

CTA derived fractional flow reserve (FFR_{CT}):

- Have shown promise in guiding downstream management of patients with CAD²
- One-year outcomes of FFR_{CT} guided care in a clinical trial setting was favorable²

Longer term clinical outcome data in patients undergoing CTA testing with FFR_{CT} guidance in day-to-day practice is sparse

Overall purpose of the study

 To assess the safety and clinical outcomes of utilizing a diagnostic strategy of first-line coronary CTA with selective FFR_{CT} testing in real world symptomatic patients with suspected stable CAD

Study design

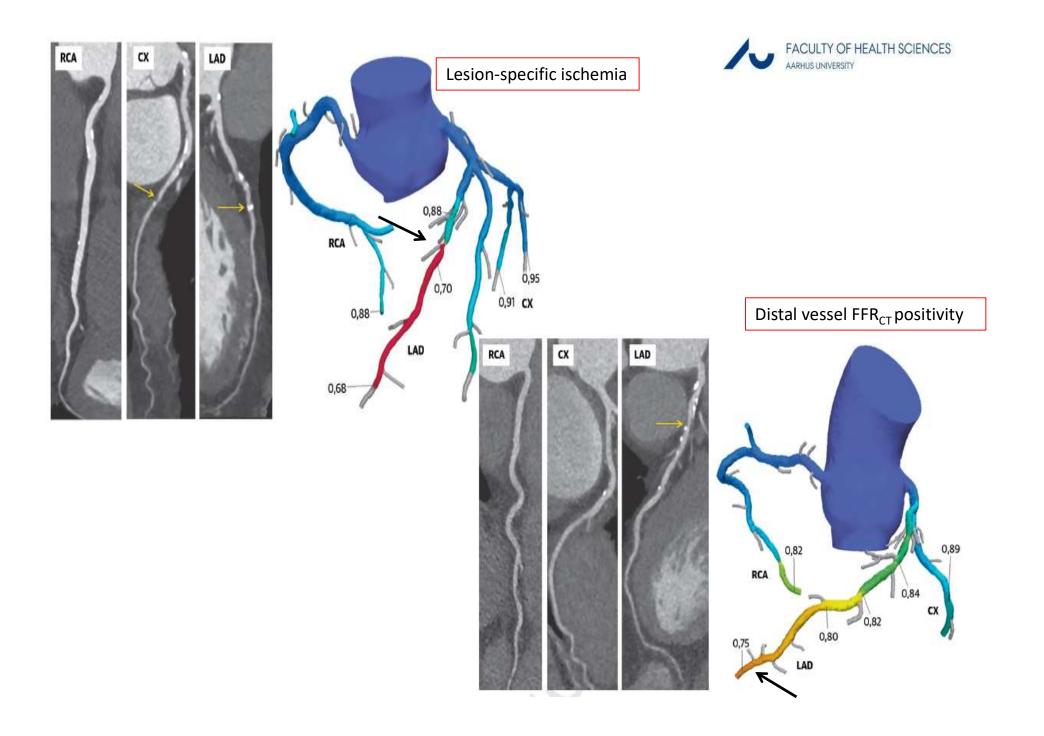
 Single-center, observational all-comer study of symptomatic patients undergoing nonemergent coronary CTA for suspected CAD with selective FFR_{CT} testing between May 2014 and December 2016

- Data sources
 - The Western Denmark Cardiac Computed Tomography Registry¹
 - Patient demographics, CTA results
 - The Danish National Patient Registry²
 - Discharge diagnoses, test and procedures for all in and outpatient encounters
 - The Danish Civil Registration system³
 - Data on mortality

Patients

- All Aarhus University Hospital patients with new onset chest pain and suspected CAD who had non-emergent coronary CTA performed from May 2014 to December 2016
 - Coronary CTA is the first-line test in such patients
 - CTA acquisition was performed according to societal guidelines¹
 - Exclusion from CTA: Contrast allergy, pregnancy, scenarios where a diagnostic image quality cannot be expected (combination of e.g. obesity, arrhytmia, and severe calcification)

Post-test management, Coronary CTA


	Test outcome	Post-test management recommendations
Coronary CTA		
Diagnostic conclusive	High-risk anatomy	ICA
	Intermediate-risk anatomy	FFR _{CT}
	Low-risk anatomy	No further testing
Diagnostic inconclusive	-	MPI, or ICA

Optimal medical treatmet was recommended in all patients with CAD ICA =invasive coronary angiography, MPI =myocardial perfusion imaging

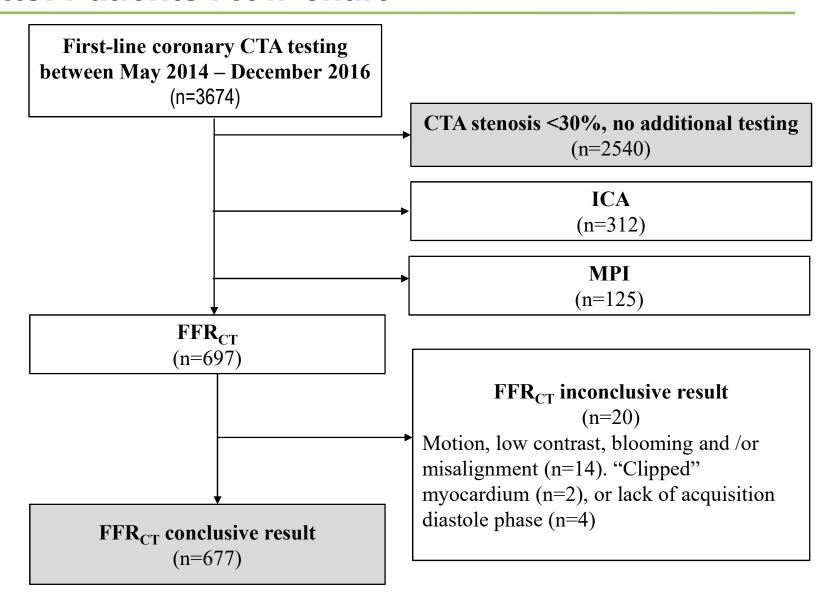
Post-test management, FFR_{CT}

	Test outcome	Post-test management recommendations
FFR _{CT}		
Diagnostic conclusive	Negative, all values >0.80	OMT, no additional testing
	Positive , one or more values ≤0.80	
	-Lesion-specific ischemia	OMT or ICA
	-Distal vessel positivity	OMT
Diagnostic inconclusive	-	MPI, or ICA

ICA =invasive coronary angiography, MPI =myocardial perfusion imaging, OMT =optimal medical treatment

Endpoint, Follow-up, and Study aims

- Endpoint: Composite of all-cause death, non-fatal myocardial infarction, hospitalization for unstable angina, and unplanned revascularization
- **Follow-up**: Median 24 (interquartile range, 16-32; range, 8-41) months. No patients were lost to follow-up


• **Primary aim**: The cumulative incidence of the combined endpoint in patients with FFR_{CT}>0.80, and no additional testing compared to patients with no or minimal (stenosis severity <30%) CAD

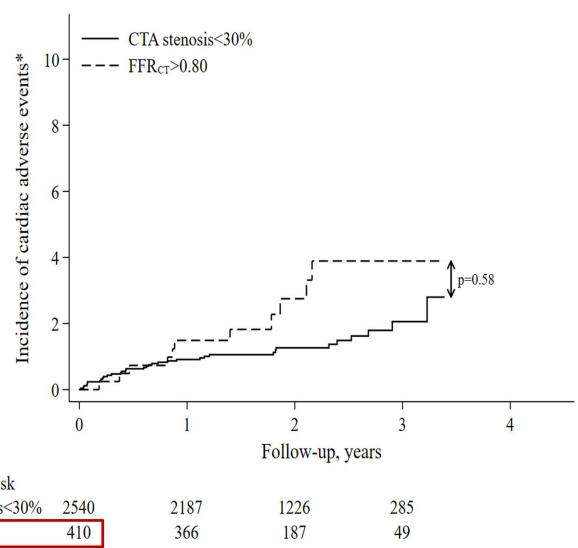
Endpoint, Follow-up, and Study aims

- Endpoint: Composite of all-cause death, non-fatal myocardial infarction, hospitalization for unstable angina, and unplanned revascularization
- **Follow-up**: Median 24 (interquartile range, 16-32; range, 8-41) months. No patients were lost to follow-up
- **Primary aim**: The cumulative incidence of the combined endpoint in patients with FFR_{CT}>0.80, and no additional testing compared to patients with no or minimal (stenosis severity <30%) CAD
- **Secondary aim**: The cumulative incidence of the combined endpoint in patients with $FFR_{CT} \le 0.80$ (OMT or ICA), compared to patients with CTA stenosis < 30%

Results: Patients Flow-chart

Results: Baseline characteristics

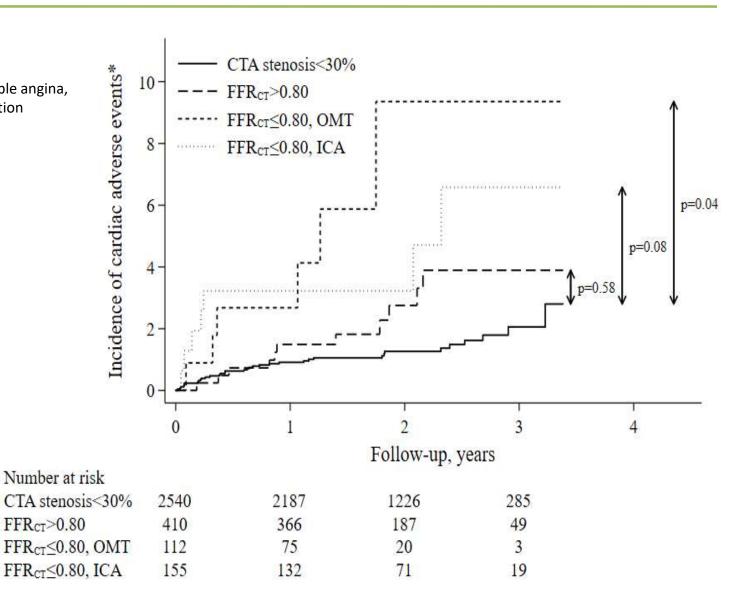
	CTA stenosis <30%	CTA stenosis ≥30%		P-value (FFR _{CT} >0.80	
	OMT (n =2540)	FFR _{CT} >0.80, OMT (n=410)	FFR _{CT} ≤0.80, OMT or ICA (n=267)	versus FFR _{CT} ≤0.80 group)	
Age, yrs, mean	56	60	62	0.006	
Male, %	43	55	65	0.02	
Diabetes mellitus,%	6	9	14	0.16	
Hypertension,%	30	40	50	0.005	
Updated D-F score, mean %	31	43	47	0.01	



Results: Anatomical characteristics

	FFR _{CT} >0.80, OMT (n=410)	FFR _{CT} ≤0.80, OMT or ICA (n=267)	P-value
Maximum CTA stenosis			
30-49%	25%	9%	<0.001
50-69%	65%	59%	0.10
≥70%	10%	32%	<0.001
Vessels with stenosis ≥50%			<0.001
1	63%	56%	
2	10%	27%	
3	1%	7%	
Mean Agatston score	164	456	<0.001

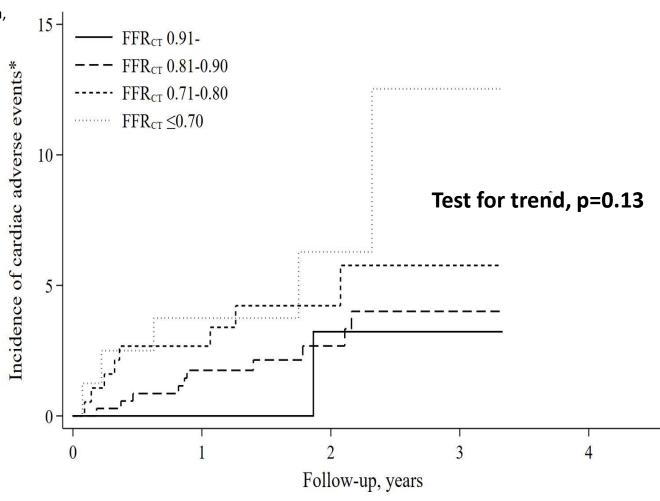
*All-cause death, non-fatal myocardial MI, hospitalization for unstable angina, unplanned revascularization



Number at risk

CTA stenosis<30%	2540	2187	1226	28
FFR _{CT} >0.80	410	366	187	49

*All-cause death, non-fatal myocardial MI, hospitalization for unstable angina, unplanned revascularization



	CTA stenosis <30%	CTA stenosis ≥30%			P-value
	OMT (n=2540)	FFR _{CT} >0.80, OMT (n=410)	FFR _{CT} ≤0.80, OMT (n=112)	FFR _{CT} ≤0.80, ICA (n=155)	
Composite end-point	2.8 (1.4-4.9)	3.9 (2.0-6.9)	9.4 (3.0-20.0)	6.6. (2.5-13.4)	0.07
All-cause death	2.3 (1.0-4.4)	1.4	1.5	2.8	0.97
Non-tatal MI	0.3 (0.1-0.6)	0.3	8.0 (2.2-18.6)	1.3	<0.001
Hospitalization for UA	0.1	1.7	0.9	2.5	0.01
Unplanned revascularization	0.4 (0.2-0.8)	1.0	8.8 (2.2-18.6)	0	<0.01

*All-cause death, non-fatal myocardial MI, hospitalization for unstable angina, unplanned revascularization

Summary

• In a real-world setting of symptomatic patients without known CAD, the presence of intermediate range CTA stenosis and FFR_{CT} >0.80 was associated with favorable clinical outcomes similar to patients with no or minimal evidence of CAD

• Risk of an unfavorable outcome was increased (driven by a higher incidence of non-fatal MI) in patients with $FFR_{CT} \le 0.80$, who were not referred to ICA

Conclusion

• In a real-world clinical practice, a diagnostic strategy of first-line coronary CTA in symptomatic patients suspected of CAD, and FFR_{CT} testing in those with intermediate range lesions is effective in differentiating patients who do not require further diagnostic testing or intervention ($FFR_{CT} > 0.80$) from higher risk patients ($FFR_{CT} \leq 0.80$) in whom further testing with ICA and possibly intervention may be needed

Thank you!