# FFR<sub>angio</sub> Accuracy vs. STandard FFR: Results from the *FAST-FFR Trial*

William F. Fearon, MD
On Behalf of the FAST-FFR Study Investigators





#### **Disclosure Statement of Financial Interest**

Within the past 12 months, I or my spouse/partner have had a financial interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship

**Institutional Grant/Research Support:** 

**Consulting Fees/Honoraria:** 

**Major Stock Shareholder/Equity Interest:** 

**Royalty Income:** 

**Ownership/Founder:** 

Salary:

**Intellectual Property Rights:** 

**Other Financial Benefit:** 

**Company** 

Abbott, Medtronic, CathWorks,

**Boston Scientific** 

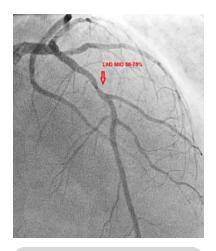
**Stock Options HeartFlow** 





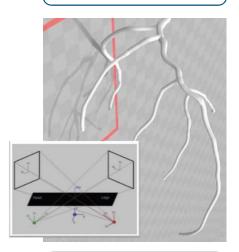
 Measuring fractional flow reserve (FFR) with a coronary pressure wire to guide revascularization decisions in the catheterization laboratory has been shown to improve outcomes in a variety of clinical settings and is now included in multiple guideline statements.




- FFR utilization, however, remains lower than expected because of a number of potential issues including the extra time it takes, wire handling characteristics, pressure wire drift, the need for hyperemia, and the expense.
- For all of these reasons, a technique for deriving FFR without the need of a pressure wire or hyperemic agent would be advantageous and could increase the adoption of physiology-guided revascularization.

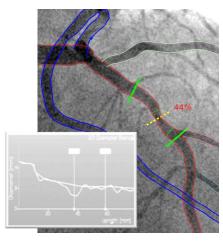


- Coronary angiography-derived FFR (FFR<sub>angio</sub>) is a new method for measuring FFR without a coronary pressure wire or hyperemic agent.
- FFR<sub>angio</sub> relies on creating a three-dimensional (3D) reconstruction of the coronary arterial system and estimating the resistance and flow at each point along the entire coronary tree.



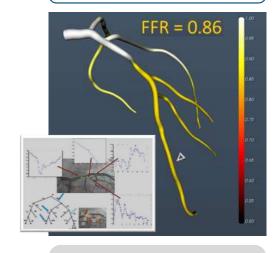

Optimal 2D angiography




Optimal projections
Optimal frame
Motion compensation

3D model reconstruction




Extracting centerlines
Tree topology

Stenosis assessment



Bifurcation analysis 2D-QCA analysis Estimating diameters

Hemodynamic evaluation



Resistance mapping Maximum blood flow Flow rate ratio





- Preliminary studies have found that FFR<sub>angio</sub> when measured off-site by experienced operators correlates well with pressure wire-derived FFR.
- FFR<sub>angio</sub> has not been well validated when performed on-site by independent, local operators blinded to pressure wire-derived FFR and compared with core laboratory analyzed FFR values in a large, prospective, multicenter fashion.



#### **Objective**

• The FAST-FFR study is a prospective, multicenter, international trial comparing the accuracy of on-site FFR<sub>angio</sub> with pressure wire-derived FFR.



#### Patients undergoing coronary angiography

3 roll-in patients / site

350 study patients

380 patients in total

FFR of ≥ 1 lesion as part of standard care

Reviewed by core-lab at CRF

Simultaneous blinded FFR angio on-site

Reviewed by core-lab at CathWorks





#### Inclusion Criteria

 Adult patients with stable angina, unstable angina, or non-ST elevation acute coronary syndromes undergoing coronary angiography with coronary pressure wire-derived FFR measurement of a coronary stenosis



#### Clinical Exclusion Criteria

- STEMI within the past 12 months
- Prior CABG, valve surgery, or heart transplantation
- Severe aortic stenosis
- **LV** Ejection Fraction ≤ 45%





### Angiographic Exclusion Criteria

- Left main stenosis > 50%
- Chronic total occlusion in target vessel
- < TIMI 3 flow in target vessel</li>
- In-stent restenosis or recent stent placement in target vessel
- Severe diffuse disease
- Target vessel receiving collaterals





#### **Coronary Angiography**

- Performed at each site per standard of care at a cine frame rate of at least 10 frames/second.
- Obtained at different projections (the exact inclination of the C-arm was left to the operator's discretion), with the entire vessel visualized, with adequate contrast opacification, avoiding vessel overlap, and without panning the table or moving the image intensifier.



#### Pressure Wire-Derived FFR

- Any commercially available pressure wire system
- FFR measured in standard fashion with intravenous or intracoronary adenosine or intracoronary papaverine
- Pressure drift checked on pullback. If > ±0.03, the pressure wire was to be re-equalized and FFR was to be remeasured
- FFR tracings were sent to FFR core laboratory for review, blinded to FFR<sub>angio</sub> values





**FFR** angio

 At least 3 DICOM videos of the vessel of interest were transferred immediately to the FFR<sub>angio</sub> console

 A hospital operator then calculated the FFR<sub>angio</sub> blinded to the pressure wire-derived FFR

■ The FFR<sub>angio</sub> result was then sent to the core laboratory

for review





### **Co-Primary Endpoints**

- Sensitivity & Specificity of FFR<sub>angio</sub> as compared with pressure wire-derived FFR using a cutoff value ≤ 0.80.
- Powered to meet the lower bound of the 95% CI for predefined performance goals set at:
  - Sensitivity = 0.70
  - Specificity = 0.75

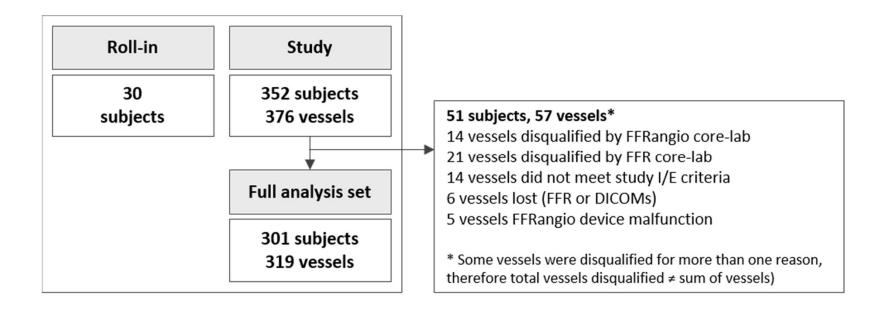


### Secondary Endpoints

- Diagnostic accuracy of FFR<sub>angio</sub>
- Correlation between FFR<sub>angio</sub> and FFR
- FFR<sub>angio</sub> device success






# Results Enrollment by Site

| PI                 | Site                        | Country       | Enrollment |
|--------------------|-----------------------------|---------------|------------|
| Stephane Achenbach | University of Erlangen      | Germany       | 67         |
| Thomas Engstrom    | Rigshospitalet              | Denmark       | 64         |
| Abid Assali        | Rabin Medical Center        | Israel        | 59         |
| Allen Jeremias     | St. Francis Hospital        | United States | 56         |
| Stephane Fournier  | OLV Aalst                   | Belgium       | 33         |
| William Fearon     | Stanford University         | United States | 32         |
| Ajay Kirtane       | Columbia University         | United States | 25         |
| Gabriel Greenberg  | HaSharon Medical Center     | Israel        | 19         |
| Rami Jubeh         | Shaare Zedek Medical Center | Israel        | 16         |
| Daniel Kolansky    | University of Pennsylvania  | United States | 11         |





# Results Subject Flowchart





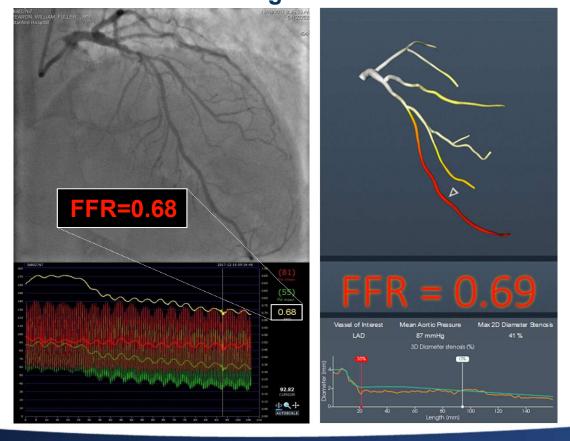


# **Results**

| Baseline Characteristic                   | n=301 patients |
|-------------------------------------------|----------------|
| Age                                       | 64.7 ± (9.7)   |
| Male                                      | 74.1%          |
| Body Mass Index (kg/m²)                   | 28.9 ± (4.8)   |
| Hypertension                              | 69.1%          |
| Hypercholesterolemia                      | 76.4%          |
| Diabetes Mellitus                         | 31.9%          |
| Smoking (current or former)               | 52.8%          |
| Left Ventricular Ejection Fraction (LVEF) | 58 ± (6)%      |
| Family history of coronary artery disease | 39.3%          |
| Prior STEMI                               | 3.3%           |
| Prior PCI with stent                      | 29.2%          |
| Presentation                              |                |
| Acute coronary syndrome (UA or NSTEMI)    | 41.9%          |
| Stable patients                           | 57.2%          |



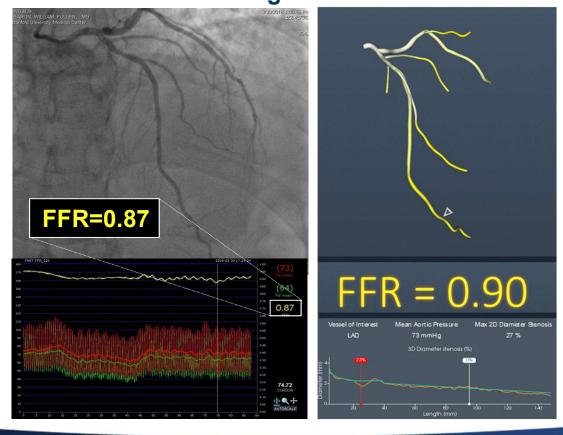



# **Results**

| Angiographic Result               | n=319 vessels |
|-----------------------------------|---------------|
| Lesions per patient               | 1.1 ±0.3      |
| Target Vessel                     |               |
| LAD                               | 54.2%         |
| RCA                               | 24.1%         |
| LCX                               | 19.1%         |
| Ramus                             | 2.5%          |
| % Diameter Stenosis (Visual)      | 63 ±17%       |
| % Diameter Stenosis (QCA)         | 51 ±10%       |
| Lesion and Vessel Characteristics |               |
| Bifurcation                       | 17.3%         |
| Moderate/Severe Tortuosity        | 5.5%          |
| Moderate/Severe Calcification     | 19.9%         |
| Lesion Class B or C               | 88.8%         |






# FFR and FFR<sub>angio</sub> Case Example







# FFR and FFR<sub>angio</sub> Case Example







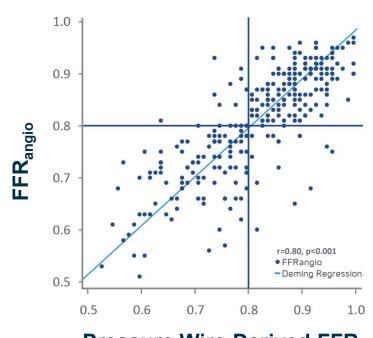
# Results

# FFR and FFR<sub>angio</sub> Results

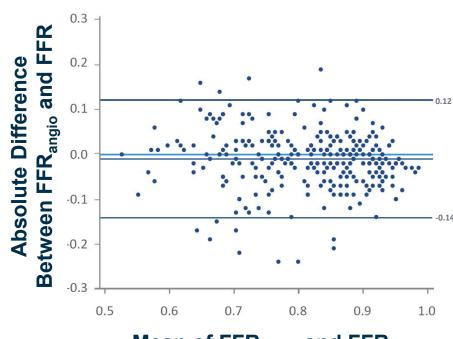
| Physiologic Result             | FFR               | FFR <sub>angio</sub> |
|--------------------------------|-------------------|----------------------|
| Mean                           | 0.81 ± (0.13)     | 0.80 ± (0.12)        |
| Median                         | 0.83 (0.74, 0.90) | 0.82 (0.73, 0.89)    |
| % of positive lesions (≤ 0.80) | 43.3%             | 45.5%                |
| % within 0.70-0.90             | 58.9%             | 63.6%                |
| % within 0.75-0.85             | 31.3%             | 31.0%                |

FFR<sub>angio</sub> was successfully measured in 98.7% of cases






# Results *Primary and Secondary Endpoints*






# Results Correlation and Bland Altman Plot



**Pressure Wire-Derived FFR** 









# Results

| Characteristic                            | Concordant<br>(N = 277) | Discordant<br>(N = 24) | P value |
|-------------------------------------------|-------------------------|------------------------|---------|
| Age                                       | 64.7 ± (9.7)            | 64.6 ± (9.8)           | 0.52    |
| Male                                      | 74.1%                   | 73.3%                  | 0.28    |
| Body Mass Index (kg/m²)                   | 28.9 ± (4.8)            | 28.8 ± (4.9)           | 0.07    |
| Hypertension                              | 69.1%                   | 69.0%                  | 0.85    |
| Hypercholesterolemia                      | 76.4%                   | 76.5%                  | 0.87    |
| Diabetes Mellitus                         | 31.9%                   | 32.1%                  | 0.77    |
| Smoking (current or former)               | 52.8%                   | 53.4%                  | 0.48    |
| Left Ventricular Ejection Fraction (LVEF) | 58 ± (6)%               | 58 ± (6)%              | 0.99    |
| Family history of coronary artery disease | 39.3%                   | 39.9%                  | 0.53    |
| Presentation                              |                         |                        |         |
| Acute coronary syndrome (UA or NSTEMI)    | 41.5%                   | 45.8%                  | 0.68    |
| Stable patients                           | 44.8%                   | 33.3%                  | 0.28    |





# Results

| Characteristic                          | Concordant<br>(N = 297) | <b>Discordant</b> (N = 25) | P value |
|-----------------------------------------|-------------------------|----------------------------|---------|
| Target vessel                           |                         |                            |         |
| LAD                                     | 55.9%                   | 32.0%                      | 0.03    |
| RCA                                     | 22.6%                   | 40.0%                      | 0.04    |
| LCX                                     | 19.5%                   | 20.0%                      | 0.14    |
| Ramus                                   | 2.0%                    | 8.0%                       | 0.09    |
| % Diameter Stenosis (Visual estimation) | 63 ± (17)               | $63 \pm (9.8)$             | 0.88    |
| Mean FFR                                | $0.80 \pm (0.13)$       | $0.83 \pm (0.07)$          | 0.16    |
| FFR ≤ 0.80                              | 43.9%                   | 36.0%                      | 0.42    |
| Mean FFRangio                           | 0.80 ± (0.12)           | $0.79 \pm (0.08)$          | 0.52    |
| FFRangio ≤ 0.80                         | 43.9%                   | 64.0%                      | 0.05    |





#### **Limitations**

- We did not specifically assess the time it takes to calculate FFR<sub>angio</sub> in comparison to pressure wirederived FFR.
- Some important patient subsets including left main disease, low ejection fraction and in-stent restenosis were not included and will require further study.



## **Summary**

- FFR derived from routine coronary angiography (FFR<sub>angio</sub>) had very high sensitivity, specificity and diagnostic accuracy, all of which were greater than 90% for predicting the reference standard, coronary pressure wire-derived FFR.
- FFR<sub>angio</sub> and FFR remained highly correlated over the entire range of FFR values.
- FFR<sub>angio</sub> was successfully measured in almost all cases included.



#### Conclusion

- FFR<sub>angio</sub> may provide an easier and potentially faster method for performing physiology guided assessment of the overall coronary angiogram with similar accuracy to the reference standard, coronary pressure wire-based FFR.
- This may translate into a greater percentage of patients undergoing physiologic guidance for revascularization decisions and ultimately improve long-term outcomes.



# Circulation



#### Accuracy of Fractional Flow Reserve Derived From Coronary Angiography

William F. Fearon, MD<sup>1</sup>., Stephan Achenbach, MD PhD<sup>2</sup>, Thomas Engstrom, MD PhD<sup>3</sup>, Abid Assali, MD<sup>4</sup>, Richard Shlofmitz, MD<sup>5</sup>, Allen Jeremias, MD<sup>5</sup>, Stephane Fournier, MD<sup>6</sup>, Ajay J. Kirtane, MD<sup>7</sup>, Ran Kornowski, MD<sup>4</sup>, Gabriel Greenberg, MD<sup>8</sup>, Rami Jubeh, MD<sup>9</sup>, Daniel M. Kolansky, MD<sup>10</sup>, Thomas McAndrew, PhD<sup>11</sup>, Ovidiu Dressler, MD<sup>11</sup>, Akiko Maehara, MD<sup>7</sup>, Mitsuaki Matsumura, BS<sup>11</sup>, Martin B. Leon, MD<sup>7</sup>, and Bernard De Bruyne, MD PhD<sup>6</sup> for the FAST-FFR Study Investigators

Published on line Monday, September 24, 2018



