A Fully Magnetically Levitated Left Ventricular Assist Device

Final Report of the MOMENTUM 3 Trial

<u>Mandeep R. Mehra, MD</u>, Nir Uriel, MD, Joseph C. Cleveland, Jr., MD, Daniel J. Goldstein, MD, National Principal Investigators, on behalf of the MOMENTUM 3 Investigators

Disclosures

• Dr. Mandeep R. Mehra:

Consultant for Abbott, Portola, Bayer, and Xogenex. Trial steering committee member for Medtronic and Janssen. Scientific advisory board member for NupulseCV and FineHeart. DSMB member for Mesoblast. Travel support from Abbott.

• Dr. Nir Uriel:

Research grants from Abbott and Medtronic. Consultant for Abbott and Medtronic.

- Dr. Joseph C. Cleveland, Jr.: Institutional research grants from Abbott.
- Dr. Daniel J. Goldstein:

Proctor and educator for Abbott. Travel support from Abbott. DSMB member for TERUMO Inc.

MOMENTUM 3 is sponsored by Abbott (ClinicalTrials.gov NCT02224755) MOMENTUM 3

Background

• Left Ventricular Assist Systems (LVAS) improve survival and quality of life in patients with advanced heart failure refractory to medical therapy^{1,2}

Fang JC. N Engl J Med 2009;361(23):2282-5

HeartMate II: Continuous-flow LVAD

¹Rose EA et al. Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure. *N Engl J Med* 2001;345(20):1435-43 ²Slaughter MS et al. Advanced Heart Failure Treated with Continuous-Flow Left Ventricular Assist Device. *N Engl J Med* 2009;361(23):2241-51

Background

 Despite improving survival and quality of life, patients with continuous-flow LVADs are burdened with <u>hemocompatibility-related complications</u>¹

- Consequences of adverse interactions between
 the *pump and circulating blood elements*
 - Pump thrombosis
 - Stroke
 - Gastrointestinal bleeding

HeartMate 3 LVAS

- <u>Wide</u> blood-flow passages to reduce shear stress
- **Frictionless** with absence of mechanical bearings
- Intrinsic Pulse designed to reduce stasis and avert thrombosis

¹Mehra MR et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. N Engl J Med 2017;376(5):440-50 ²Mehra MR et al. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. N Engl J Med 2018;378(15):1386-95

Two Interim Analyses

¹Mehra MR et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. *N Engl J Med* 2017;376(5):440-50. ²Mehra MR et al. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. *N Engl J Med* 2018;378(15):1386-95 ³Colombo PC et al. Comprehensive Analysis of Stroke in the Long-Term Cohort of the MOMENTUM 3 Study. *Circ* 2019;139 (2):155-68

Full Cohort

8

Baseline Characteristics

Charactoristic	HeartMate 3	HeartMate II	
	(n=516)	(n=512)	
Mean age - years	59 ± 12	60 ± 12	
Male - no. (%)	411 (79.7)	419 (81.8)	
Race - no. (%)			
White	342 (66.3)	367 (71.7)	
Black or African American	145 (28.1)	120 (23.4)	
Asian	8 (1.6)	3 (0.6)	
Native Hawaiian or Pacific islander	0 (0)	4 (0.8)	
Other	21 (4.1)	18 (3.5)	
schemic cause of heart failure - no. (%)	216 (41.9)	240 (46.9)	
ntravenous inotropic agents - no. (%)	445 (86.2)	423 (82.6)	
ntra aortic balloon pump - no. (%)	64 (12.4)	79 (15.4)	
Serum creatinine - mg/dl	1.4 ± 0.4	1.4 ± 0.4	
Serum sodium – mmol/liter	135.4 ± 4.1	135.5 ± 4.2	
Aean arterial pressure - mmHg	79.2 ± 10.4	79.2 ± 10.1	
NTERMACS profile - no. (%)			
1	11 (2.1)	18 (3.5)	
2	156 (30.2)	146 (28.5)	
3	272 (52.7)	251 (49.0)	
4	67 (13.0)	82 (16.0)	
5-7 or not provided*	10 (1.9)	15 (2.9)	
ntended goal of pump support - no. (%)		· · · · ·	1
Bridge to transplantation (BTT)	113 (21.9)	121 (23.6)	
Bridge to candidacy for transplantation	86 (16.7)	81 (15.8)	
Destination therapy (DT)	317 (61.4)	310 (60.5)	
ere were significant differences between groups for race (P=0.04). *	Assessments were not performed in 2	MOMENT	UM

Q

centrifugal-flow pump patients and 5 axial-flow pump patients.

Primary End Point (ITT)

Survival at 2 years free of disabling stroke (>3 mRS) or

reoperation to replace or remove a malfunctioning device

mRS denotes modified Rankin Score; HR, hazard ratio; CI, confidence interval

Principal Secondary End Point

Pump replacement at 2 years

RR denotes relative risk; CI, confidence interval; HR, hazard ratio

11

Principal Hemocompatibility-Related Adverse Events

Relative Risk (95% CI)

HM3 denotes HeartMate 3; HMII HeartMate II; EPPY events per patient year; CI, confidence interval. *P values were calculated with Poisson Regression.

MOMENTUM 3

Stroke

Stroke Severity

Death (Modified Rankin Score 6)

HR denotes hazard ratio; CI, confidence interval; RR, relative risk; EPPY, events per patient year

Gastrointestinal Bleeding

Freedom from Gastrointestinal Bleeding

Stroke and Bleeding Hazard Functions

Mean arterial blood pressure, aspirin usage, and INR did not differ between the treatment arms during the trial.

15

Other Adverse Events

Adverse Event	HM3	нм іі н	імз ни	/ II		SK (33 /8 CI)	
	n (%)	n (%) EF	PPY EP	PY	1		
Other neurologic event+	59 (11.5)	47 (9.3) 0	.09 0.0	08	-+		1.25 (0.88 - 1.79)
TIA	16 (3.1) ·	19 (3.8) 0	.03 0.0	03		•	-1.10 (0.60 - 2.02)
Any major infection	300 (58.3) 28	35 (56.4) 0	.82 0.8	82	÷-	_	1.00 (0.89 - 1.12)
LVAS driveline infection	120 (23.3) 9	8 (19.4) 0	.23 0.2	22	-+		1.06 (0.85 - 1.32)
Any right heart failure	176 (34.2) 14	13 (28.3) 0	.27 0.2	23	+		1.15 (0.94 - 1.42)
Managed with RVAS	21 (4.1)	21 (4.2) 0	.03 0.0	03			0.91 (0.50 - 1.67)
Cardiac arrhythmia	185 (35.9) 20	07 (41.0) 0	.37 0.4	45			0.82 (0.70 - 0.97)
Ventricular arrhythmia	107 (20.8) 12	28 (25.3) 0	.20 0.2	27			0.76 (0.62 - 0.94)
Respiratory failure	111 (21.6) 9	8 (19.4) 0	.19 0.1	17	-	-	1.10 (0.86 - 1.40)
Renal dysfunction	73 (14.2) 5	6 (11.1) 0	.11 0.0	08	ł		1.36 (0.98 - 1.89)
Hepatic dysfunction	25 (4.9)	27 (5.3) 0	.03 0.0	04			0.78 (0.46 - 1.34)
				0	0.5 1	1.5	2
				◀───	HM3 better	HM II better	→

Polativo Rick (05% CI)

MOMENTUM 3

P-Value* 0.21

0.75

0.96

0.60

0.18

0.76

0.02

0.01

0.44

0.07

0.38

16

HM3 denotes HeartMate 3; HMII HeartMate II; EPPY events per patient year; CI, confidence interval; TIA transient ischemic attack. *P values were calculated with Poisson Regression. +Includes TIA, encephalopathy, seizure and neurologic events other than stroke

Competing Outcomes

Months Post Implant

Months Post Implant

Actuarial overall survival at 2-years was not significantly different between the groups: 79.0% for HeartMate 3 versus 76.7% for HeartMate II (log-rank P = 0.37) MOMENTUM 3

Hospitalization Profiles, Days Out of the Hospital and Readmissions

Patients Discharged on LVAD Support	HeartMate 3 (N=485)	HeartMate II (N=471)	Difference or HR (95%CI)	P *					
Implant Hospitalization									
Median length of stay [interquartile range] - days	19 [14 to 25]	17 [14 to 24]	2 (0.7 to 3.3)	0.11					
Post-Discharge									
Median duration of rehospitalization [interquartile range] - days	13 [4 to 37]	18 [6 to 40]	-5 (-8.7 to -1.3)	0.02					
Median duration on LVAD support outside of hospital [interquartile range] - days	653 [333 to 696]	605 [259 to 690]	48 (-0.8 to 96.8)	0.008					
Rate of rehospitalization for any cause - EPPY	2.26	2.47	0.92 (0.86 to 0.99)+	0.03					

EPPY denotes events per patient year; HR, hazard ratio; CI, confidence interval.

*P values for differences in duration are from Wilcoxon Rank Sum test. *HR was calculated from the Andersen-Gill model.

Functional Status and Quality of Life

6 Minute Walk Distance

EQ-5D-5L Visual Analogue Scale

*P-value between treatment arms over time. **P-value for treatment over time. Longitudinal changes were analyzed with linear mixed-effects models using data from baseline, 3, 6, 12, 18, and 24 month visits.

Subgroup Analyses of the Primary Endpoint (ITT)

20

BTT denotes bridge to transplant; BTC, bridge to candidacy; DT, destination therapy

Net Clinical Benefit in the Trial

- The Number Needed to Treat over two years to avert at least 1 hemocompatibilityrelated adverse event (pump thrombosis, stroke, or bleed) is <u>less than 1</u>
- For every 100 patients implanted with HeartMate 3 rather than HeartMate II over a two-year period

Summary: A More Forgiving Pump

- In the largest LVAD study performed, the centrifugal-flow HeartMate 3 LVAS has demonstrated superior performance compared to the axialflow HeartMate II pump with respect to:
 - Reduction in Pump Thrombosis
 - Reduction in Strokes of *any type* and of *any severity*
 - Reduction in any Bleeding, particularly gastrointestinal bleeds
 - Reduction in Cardiac Arrhythmias, particularly ventricular arrhythmias
 - Reduction in readmissions and days spent in the hospital

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

A Fully Magnetically Levitated Left Ventricular Assist Device — Final Report

M.R. Mehra, N. Uriel, Y. Naka, J.C. Cleveland, Jr., M. Yuzefpolskaya, C.T. Salerno, M.N. Walsh, C.A. Milano, C.B. Patel, S.W. Hutchins, J. Ransom, G.A. Ewald,
A. Itoh, N.Y. Raval, S.C. Silvestry, R. Cogswell, R. John, A. Bhimaraj, B.A. Bruckner,
B.D. Lowes, J.Y. Um, V. Jeevanandam, G. Sayer, A.A. Mangi, E.J. Molina, F. Sheikh,
K. Aaronson, F.D. Pagani, W.G. Cotts, A.J. Tatooles, A. Babu, D. Chomsky, J.N. Katz,
P.B. Tessmann, D. Dean, A. Krishnamoorthy, J. Chuang, I. Topuria, P. Sood, and D.J. Goldstein, for the MOMENTUM 3 Investigators*

Available now on www.nejm.org

Links to all prior publications and presentations from the MOMENTUM 3 trial are available at www.MOMENTUM3investigators.com

We THANK all the patients, our investigators, clinical nurse coordinators, and allied health personnel for their dedication to the conduct of the MOMENTUM 3 trial

