# Transcatheter versus medical treatment of symptomatic severe tricuspid regurgitation: a propensity score matched analysis

#### Maurizio Taramasso MD, PhD

from a TriValve - Mayo Clinic - Leiden University collaboration

University Hospital of Zurich, University of Zurich, Switzerland





#### **Disclosure Statement of Financial Interest**

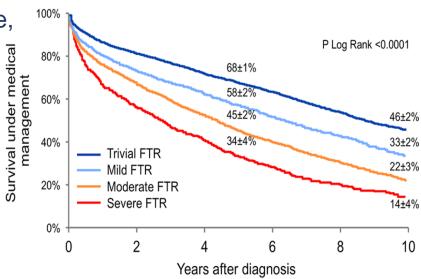
Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below:

| Affiliation/Financial Relationship | <u>Company</u> |
|------------------------------------|----------------|
|                                    |                |

Consulting Fees/Honoraria

Abbott
Boston Scientific
Edwards Lifesciences
4tech
CoreMedic



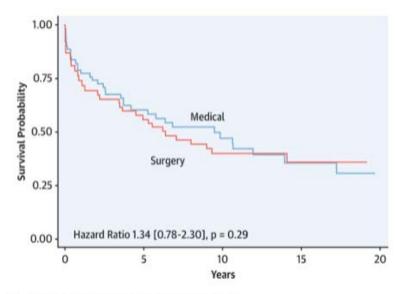



#### **Background**

High prevalence of TR in the cardiological population (concomitant left-side heart disease, chronic atrial fibrillation, or pulmonary hypertension setting)

 For long considered a benign valve disease, but highly impact the survival

 Uncertainty in regard to the clinical efficacy of TR therapies




Benfari G. et al. Circulation. 2019 Jul 16;140(3):196-206



### **Background**

- TR surgical treatment is associated to high operative mortality, suboptimal long-term survival, and frequent TR recurrence after repair.
- Uncertainty in regard to the clinical efficacy of TR therapies (currently transcatheter therapies are not included in the guidelines).
- Lacking RCTs



Axtell, A.L. et al. J Am Coll Cardiol. 2019;74(6):715-25.





### **TriValve Registry**

• The TriValve International Registry represents so far the largest multicenter, multi-devices series of patients with symptomatic severe TR who underwent transcatheter tricuspid valve interventions (TTVI)







#### **Aim**

 Comparing outcomes of TTVI in high-risk patients (TriValve registry) to a control group of similar patients under conservative treatment with GDMT



#### **Methods**

- The control cohort of patients with severe TR was formed by consecutive patients evaluated at Mayo Clinic, Rochester, Mn, USA and Leiden University Medical Center, The Netherlands
- Exclusion criteria were previous tricuspid valve surgery or intervention, and iatrogenic (pacemaker lead related) TR
- Patients in the TTVI cohort (TriValve registry) were matched with controls using propensity scores (distance ± 0.2 SD). The variable adopted to calculate propensity score were age, Euroscore II, and pulmonary pressure level



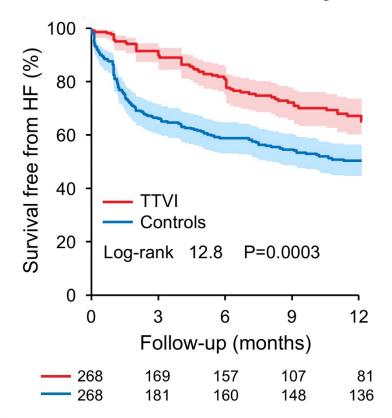
#### **Methods**

 <u>Primary endpoint</u> was mortality from any cause or rehospitalization for heart failure (HF)

 <u>Secondary endpoint</u> was overall mortality. Follow-up data were collected for patients up to 12 month

 TTVI procedural success was defined as patient alive at the end of the procedure, with device successfully implanted, delivery system retrieved and residual TR <3+</li>

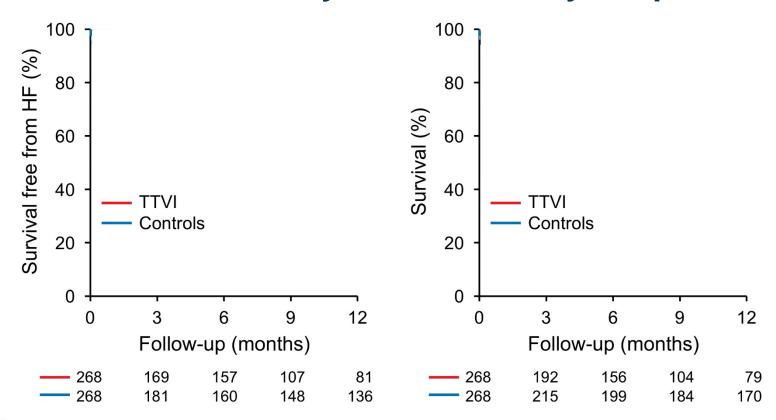



## **Results**

|                               | Overall population N=1652 |           | Propensity matched cohort N=536 |       |          |          |
|-------------------------------|---------------------------|-----------|---------------------------------|-------|----------|----------|
|                               | TTVI                      | Controls  | P-value                         | TTVI  | Controls | P-value  |
|                               | N=472                     | N=1179    |                                 | N=268 | N=268    |          |
| Age, y±SD                     | 77±8                      | 76 ±13    | 0.07                            | 77±8  | 76 ±13   | 0.2      |
| Women, %                      | 55%                       | 63%       | 0.007                           | 56%   | 59%      | 0.4      |
| TR of functional etiology     | 90%                       | 96%       | 0.0004                          | 90%   | 95%      | 0.1      |
| Left ventricular EF, %        | 50 ±13                    | 49 ±17    | 0.2                             | 49±15 | 50 ±15   | 0.2      |
| Left ventricular EF <35%, %   | 18%                       | 26%       | 0.0006                          | 22%   | 21%      | 0.7      |
| Euroscore II, (%)             | 10.5±11.2                 | 17.9±11.7 | < 0.0001                        | 12±11 | 13±9     | 0.6      |
| Right ventricular dysfunction | 34%                       | 20%       | < 0.0001                        | 37%   | 29%      | < 0.0001 |
| S-PAP, mmHg                   | 40±15                     | 52±15     | < 0.0001                        | 44±14 | 43±14    | 0.3      |
| Pulmonary hypertension, %     | 27%                       | 50%       | < 0.0001                        | 34%   | 29%      | 0.2      |
| NYHA III-IV, %                | 93%                       | 39%       | < 0.0001                        | 93%   | 23%      | < 0.0001 |
| Mitral regurgitation > 2+     | 33%                       | 18%       | < 0.0001                        | 40%   | 17%      | < 0.0001 |
| Atrial Fibrillation, %        | 83%                       | 57%       | < 0.0001                        | 82%   | 50%      | < 0.0001 |
| Pacemaker or defibrillator, % | 26%                       | 5%        | < 0.0001                        | 29%   | 12%      | < 0.0001 |



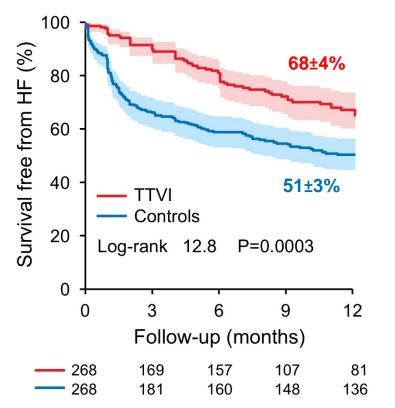


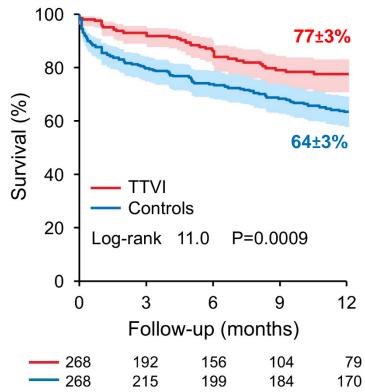

# Results: Primary and secondary endpoint








### **Results: Primary and secondary endpoint**








## Results: Primary and secondary endpoint









Model for control group

1) Unadjusted

| HR for death or heart<br>failure hosp<br>(primary endpoint) | P-value | HR for mortality (secondary endpoint) | P-value |
|-------------------------------------------------------------|---------|---------------------------------------|---------|
| 0.60 (0.46-0.79)                                            | 0.003   | 0.56 (0.39-0.79)                      | 0.001   |



Model for control group

- 1) Unadjusted
- 2) Adj. for sex and NYHA

| HR for death or heart failure hosp. (primary endpoint) | P-value | HR for mortality (secondary endpoint) | P-value |
|--------------------------------------------------------|---------|---------------------------------------|---------|
| 0.60 (0.46-0.79)                                       | 0.003   | 0.56 (0.39-0.79)                      | 0.001   |
| 0.46 (0.31-0.68)                                       | 0.0001  | 0.49 (0.31-0.79)                      | 0.003   |



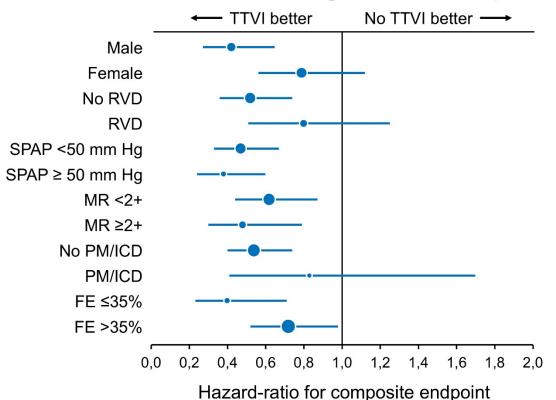
Model for control group

| 1) | <b>Unad</b> | justed |
|----|-------------|--------|
|----|-------------|--------|

- 2) Adj. for sex and NYHA
- 3) Adj. for sex and NYHA, Afib, and RV dysf.

| HR for death or heart failure hosp. (primary endpoint) | P-value | HR for mortality (secondary endpoint) | P-value |
|--------------------------------------------------------|---------|---------------------------------------|---------|
| 0.60 (0.46-0.79)                                       | 0.003   | 0.56 (0.39-0.79)                      | 0.001   |
| 0.46 (0.31-0.68)                                       | 0.0001  | 0.49 (0.31-0.79)                      | 0.003   |
| 0.39 (0.26-0.59)                                       | <0.0001 | 0.41 (0.26-0.67)                      | 0.0004  |



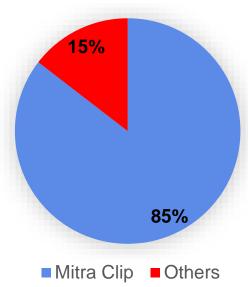


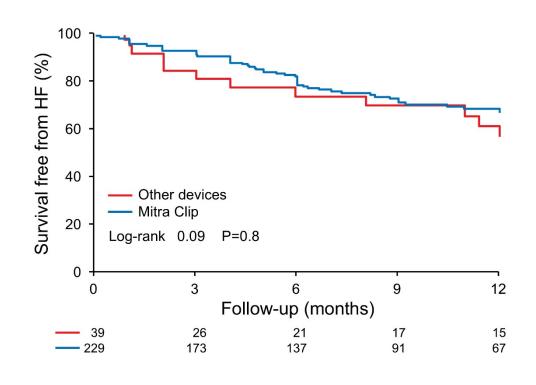

| Model for control group                                             | HR for death or heart failure hosp. (primary endpoint) | P-value | HR for mortality (secondary endpoint) | P-value |
|---------------------------------------------------------------------|--------------------------------------------------------|---------|---------------------------------------|---------|
| 1) Unadjusted                                                       | 0.60 (0.46-0.79)                                       | 0.003   | 0.56 (0.39-0.79)                      | 0.001   |
| 2) Adj. for sex and NYHA                                            | 0.46 (0.31-0.68)                                       | 0.0001  | 0.49 (0.31-0.79)                      | 0.003   |
| <ol><li>Adj. for<br/>sex and NYHA, Afib,<br/>and RV dysf.</li></ol> | 0.39 (0.26-0.59)                                       | <0.0001 | 0.41 (0.26-0.67)                      | 0.0004  |
| 4) Adj for sex and NYHA, Afib, and RV dysf, MR>2+, PM/ICD           | 0.35 (0.23-0.54)                                       | <0.0001 | 0.38 (0.23-0.63)                      | 0.002   |





## Results: subgroup analysis

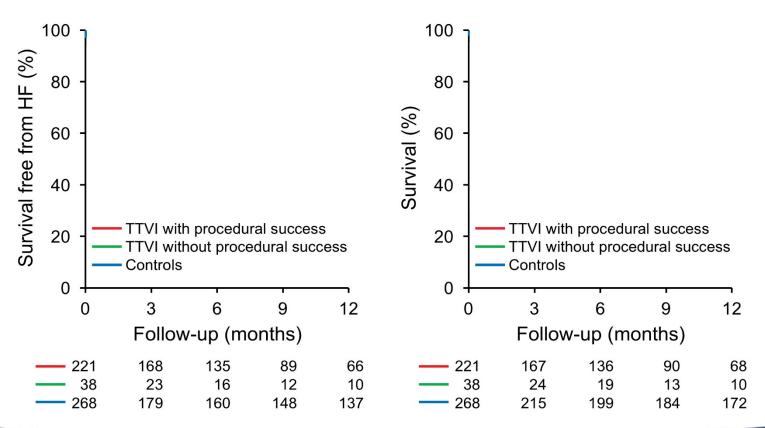





### Results: TTVI device type

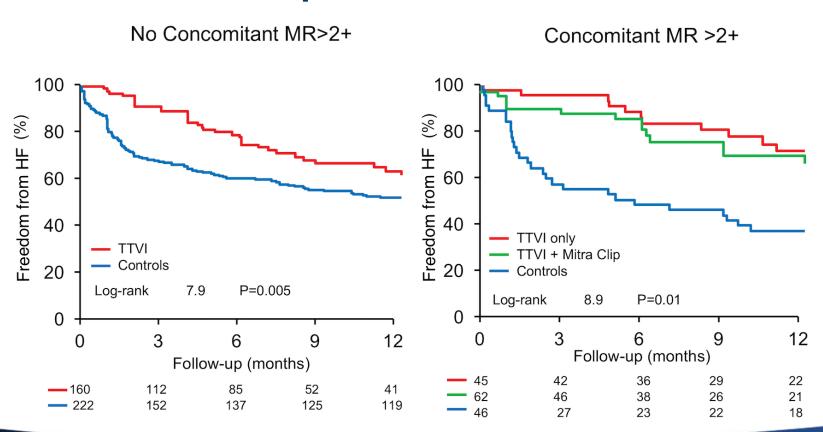












#### Results: Procedural success vs. residual TR







# **Results: impact of concomitant MR**







# Limitations of the study

- it is not a randomized trial and relevant confounders might not be represented in the risk-adjustment process
- Absence of Core-Lab
- A minority of patients had concomitant MR treatment
- Medical therapy for severe TR not standardised
- Highly selected patients in TTVI group





#### **Conclusions**

- TTVI in high-risk patients with symptomatic severe TR as compared to medical treatment alone is associated to lower incidence of composite endpoint as well as lower all-cause mortality, at 1 year follow-up
- A significant difference was observed between patients undergoing TTVI with procedural success compared to those in whom procedural success was not achieved

 TTVI patients without a significant reduction in TR presented similar outcomes vs. control group, confirming the prognostic role of TR reduction in improving outcomes

