

Effect of Icosapent Ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: the EVAPORATE study

Matthew Budoff MD
Professor of Medicine
UCLA School of Medicine
Lundquist Institute
Torrance CA

I would Like to thank my Collaborators:

Joseph B. Muhlestein MD,²

Deepak L. Bhatt MD, MPH,³

Viet T Le PA, MPAS,^{2,5}

Heidi T May, PhD, MSPH²

Kashif Shaikh MD,¹

Chandana Shekar MD,¹

April Kinniger MS,¹

Suvasini Lakshmanan, MD, MS,¹

Sion Roy MD,¹

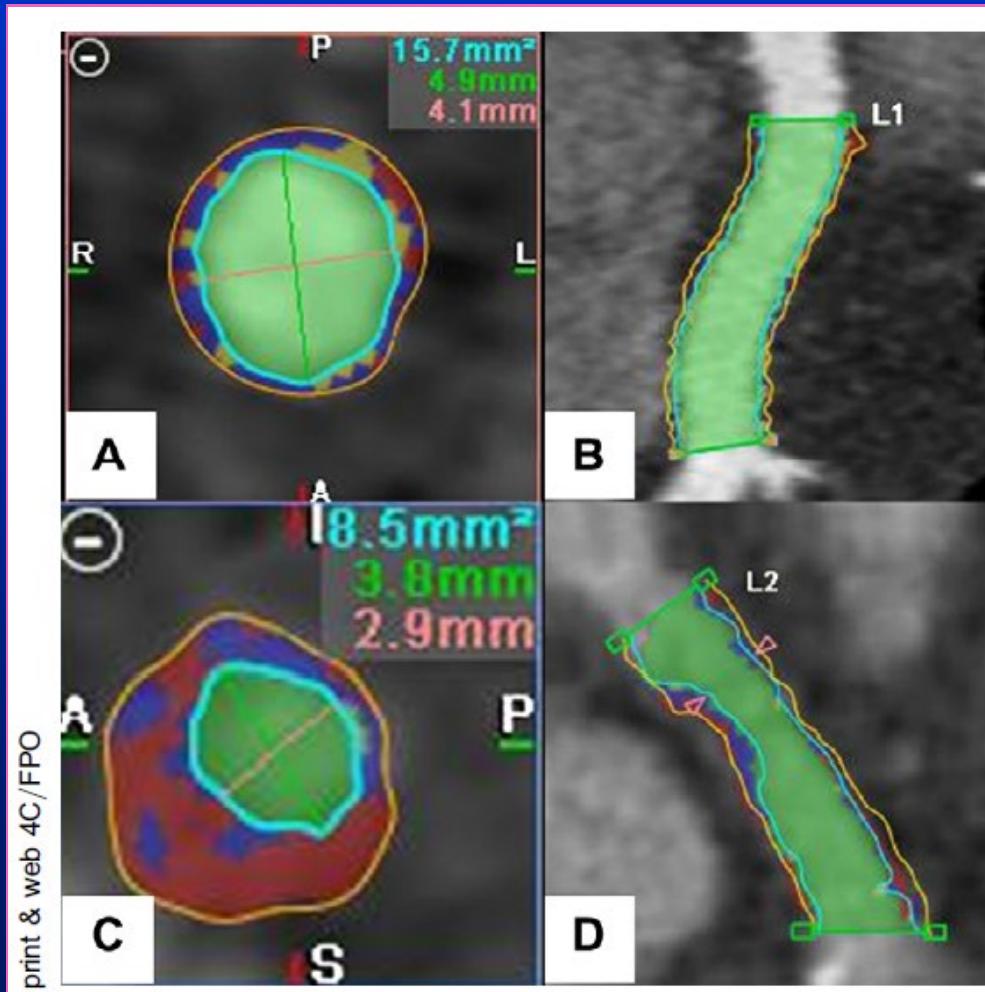
John Tayek MD,¹

John R Nelson MD.⁴

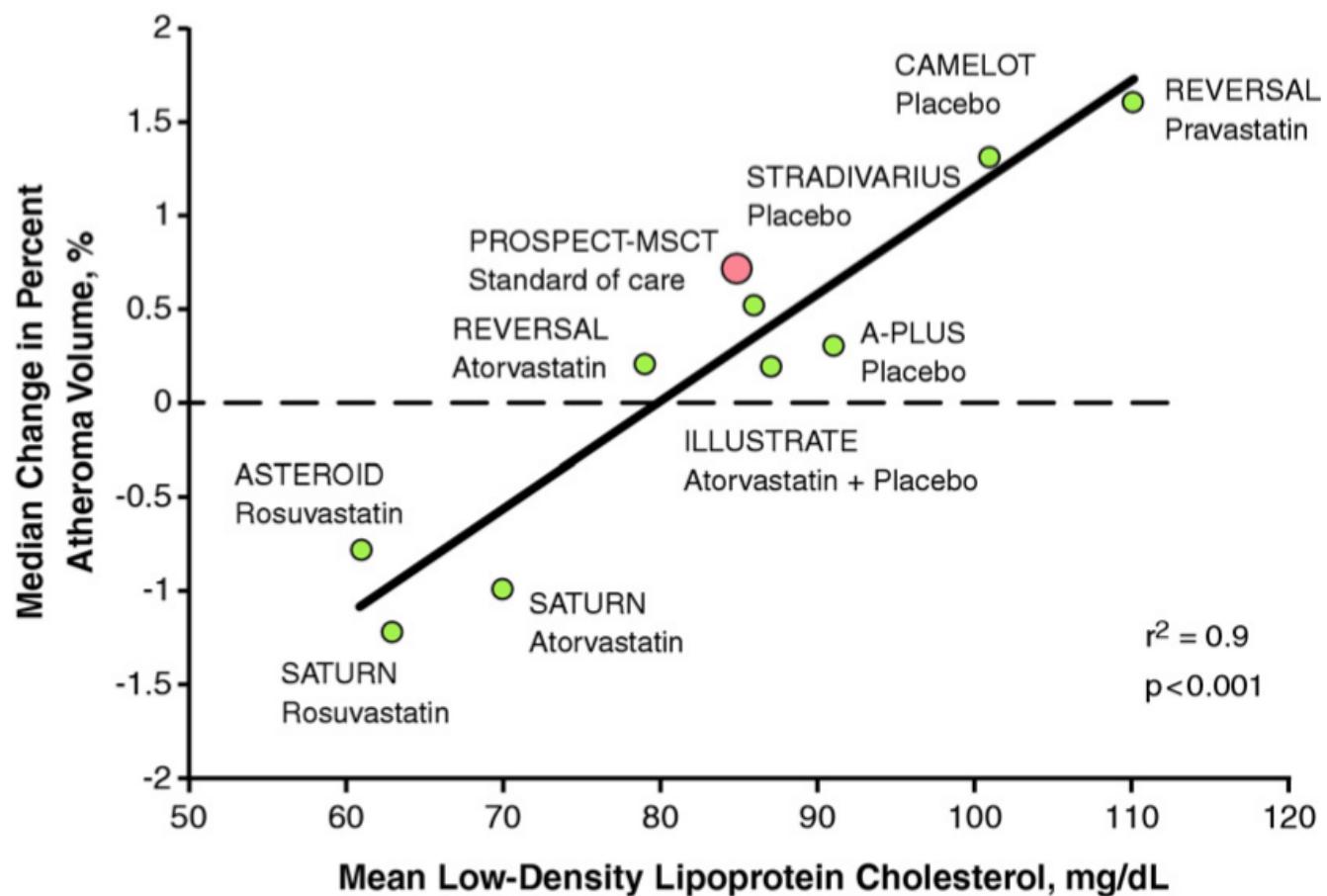
1. Department of Medicine, Lundquist Institute at Harbor-UCLA Medical Center, Torrance CA

2. Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City UT

3. Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts;


4. California Cardiovascular Institute, Fresno CA

5. Rocky Mountain University of Health Profession, Provo UT

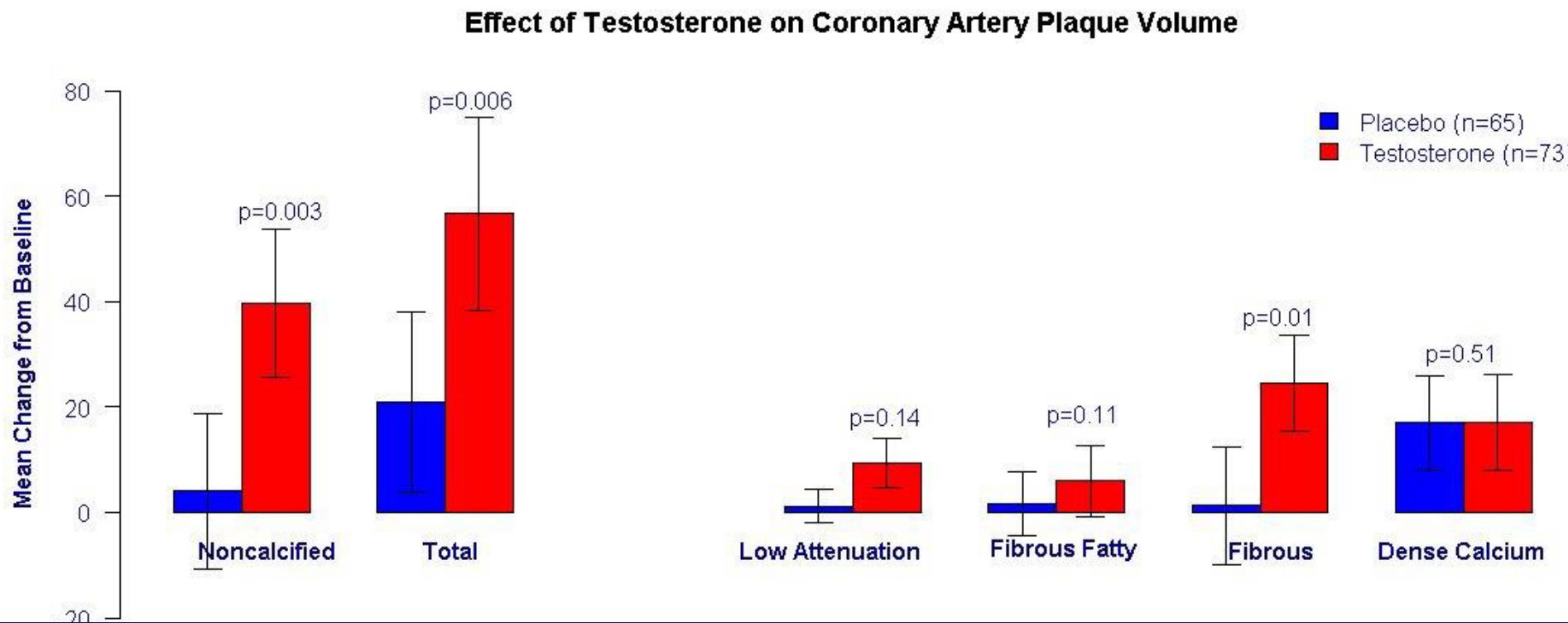

DISCLOSURES

- **Dr Matthew J Budoff discloses the following relationships:** Research Funding: Amarin Pharma, Amgen, AstraZeneca, Boehringer Ingelheim, Novo Nordisk, Pfizer, Regeneron. Speakers Bureau: Amarin Pharma, Amgen, AstraZeneca, Bristol Myers Squibb, Boehringer Ingelheim, Novo Nordisk, Pfizer, Regeneron, Sanofi Aventis.
- **Dr. Deepak L. Bhatt** discloses the following relationships -Advisory Board: Cardax, Elsevier Practice Update Cardiology, Medscape Cardiology, RegadoBiosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, TobeSoft; Chair: American Heart Association Quality Oversight Committee; Data Monitoring Committees: BaimInstitute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Cleveland Clinic, Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo), Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Vice-Chair, ACC Accreditation Committee), BaimInstitute for Clinical Research (formerly Harvard Clinical Research Institute; RE-DUAL PCI clinical trial steering committee funded by BoehringerIngelheim), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today's Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); **Research Funding:** Abbott, Amarin, Amgen, AstraZeneca, Bayer, BoehringerIngelheim, Bristol-Myers Squibb, Chiesi, Eisai, Ethicon, Forest Laboratories, Idorsia, Ironwood, Ischemix, Lilly, Medtronic, PhaseBio, Pfizer, Regeneron, Roche, Sanofi Aventis, Synaptic, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald'sHeart Disease); Site Co-Investigator: Biotronik, Boston Scientific, St. Jude Medical (now Abbott), Svelte; Trustee: American College of Cardiology; Unfunded Research: FlowCo, Merck, Novo Nordisk, PLxPharma, Takeda.
- •This presentation includes off-label and/or investigational uses of drugs.
- •**The EVAPORATE trial is funded by Amarin Pharma Inc., Bridgewater, New Jersey.**

Plaque Progression with CT Angiography

IVUS vs CTA Plaque Progression

Figure 3. Association Between Mean Low-Density Lipoprotein Cholesterol Levels and Median Change in Percent Atheroma Volume for Several Intravascular Ultrasound Studies


MDCT Coronary Imaging and CV Outcome Trials

Drug	CTA Progression	CVOT
Statin	+++ (Regression)	+++
Estrogen	Neutral	Neutral
Xarelto vs Warfarin	+ (slowed progression)	+
Fish Oil (EPA)	++ (slowed progression)	+++
Testosterone	Progression	Harmful
Eliquis vs Warfarin	+ (slowed progression)	+
Atorvastatin	+++ (regression)	+++

EFFECT OF TESTOSTERONE ON CORONARY PLAQUE VOLUME

BUDOFF et al. JAMA 2017

Plaque Progression and Events

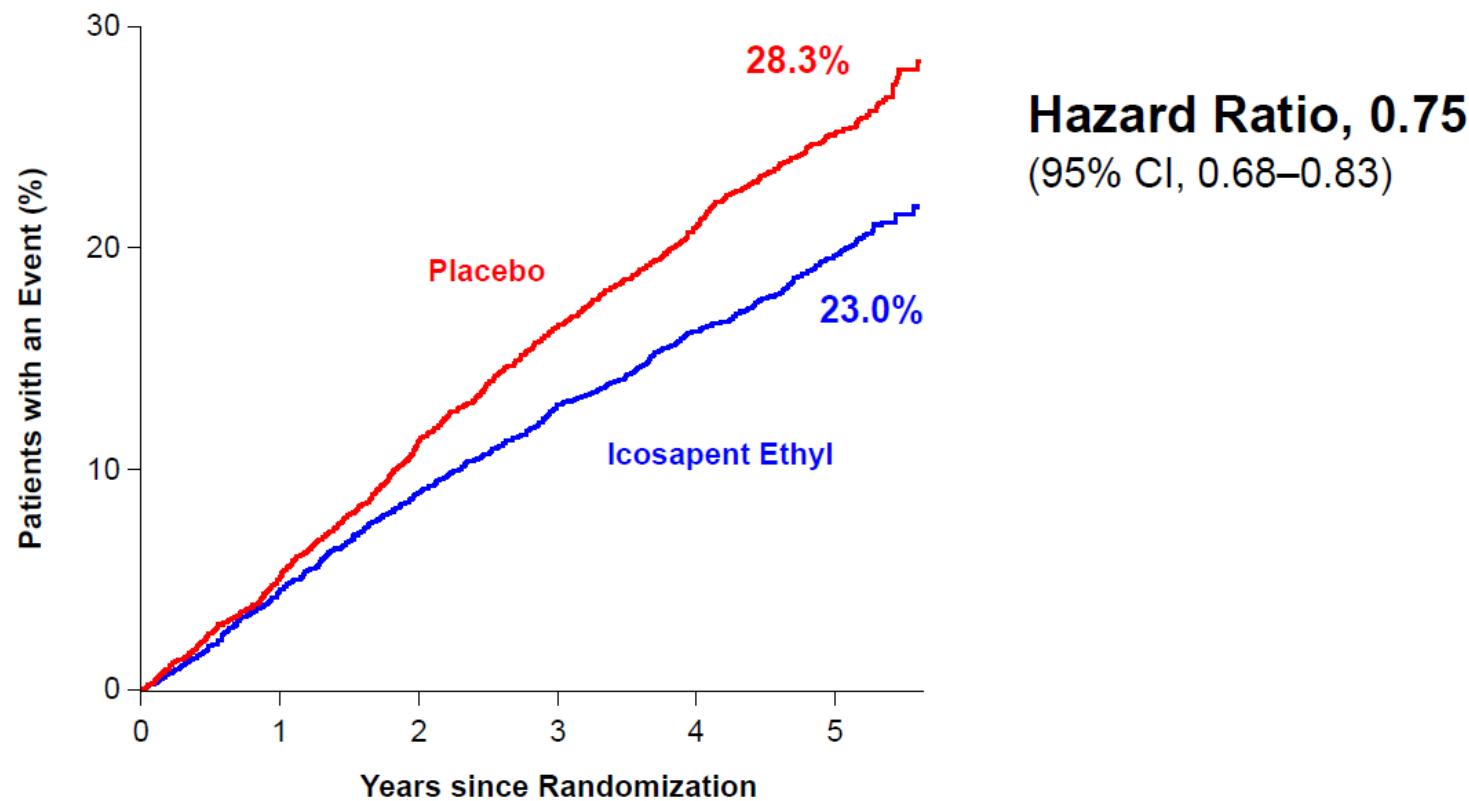
Motoyama JACC 2015

TABLE 4 Cardiac Events After CTA-2

	Univariable		Multivariable	
	HR (95% CI)	p Value	HR (95% CI)	p Value
Age	0.99 (0.94-1.06)	0.85	1.00 (0.95-1.08)	0.87
Male	1.32 (0.24-24.55)	0.78		
Hypertension	1.59 (0.39-10.70)	0.54		
Diabetes	1.13 (0.24-4.27)	0.87		
Dyslipidemia	0.86 (0.22-4.06)	0.83		
BMI >25 kg/m ²	5.58 (1.46-26.52)	0.012	3.27 (0.66-24.42)	0.15
Current smoking	2.35 (0.62-9.51)	0.20		
Previous ACS	6.26 (1.15-116.32)	0.032	8.35 (1.06-209.55)	0.043
Statin use	1.11 (0.27-7.44)	0.90		
Chest pain at CTA-2	3.09 (0.65-11.73)	0.14		
HRP at CTA-1	4.40 (1.08-16.67)	0.039	0.85 (0.07-9.01)	0.89
HRP at CTA-2	9.07 (2.38-43.11)	0.0014	2.18 (0.20-27.78)	0.51
Plaque progression	61.32 (11.24-1,137.73)	<0.0000	33.43 (4.13-78.03)	0.0006

Abbreviations as in [Tables 1 and 2](#).

Sekikawa – Nutrients 2019


Table 2. Primary outcome of atherosclerosis and the result of each included trial.

First Author, Year, Country, Reference	Imaging Techniques	Primary Outcome	Baseline Measurement Treatment vs. Control Groups	Difference in Primary Outcome between the End of Intervention and Baseline in Each of Treatment and Control Groups Treatment vs. Control Groups	Net Difference between Intervention and Control Groups	p-Value for Net Difference
Alfaddagh, 2017, US [17]	cCTA	Percent change in non-calcified plaque volume (%)	26.4 (14.3, 39.7) vs. 23.7 (14.3, 36.8)	1.71 ± 19.9 vs. 4.75 ± 16.44	-3.04	0.14
Bhatia, 2016, UK [27]	B-Mode ultrasound	Change in mean carotid IMT (mm)	0.649 ± 0.095 vs. 0.674 ± 0.098	0.0124 ± 0.0115 vs. 0.0157 ± 0.0138	-0.003	0.17
Mita, 2006, Japan [26]	B-mode ultrasound	Annual change in maximum carotid IMT (mm/year)	1.505 ± 0.412 vs. 1.706 ± 0.423	-0.084 ± 0.113 vs. -0.005 ± 0.108	-0.079	<0.01
Niki, 2016, Japan [19]	IVUS	Change in lipid plaque volume (mm ³)	18.5 ± 1.3 vs. 17.8 ± 1.3	-3.5 ± 0.2 vs. 1.5 ± 1.0	-5.0	<0.01
Nishio, 2014, Japan [18]	OCT	Change in fibrous-cap thickness (um)	47.5 ± 7.4 vs. 46.5 ± 10.9	-54.8 ± 27.9 vs. -23.5 ± 11.6	-31.3	<0.01
Watanabe, 2017, Japan [20]	IVUS	Change in normalized total atheroma volume (mm ³)	74.2 (55.9, 99.2) vs. 74.2 (57.5, 96.8)	-8.49 ± 2.37 vs. -2.90 ± 4.74	-5.59	<0.01

cCTA: coronary computed tomographic angiography, IVUS: integrated backscatter intravascular ultrasound; OCT: optical coherence tomography, IMT: intima-media thickness; SD: standard deviation; Baseline measurement is expressed as mean (SD) or median (inter-quartile range).

REDUCE IT – Bhatt et al NEJM

Primary End Point:
CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

EVAPORATE STUDY DESIGN

Received: 15 September 2017

Revised: 17 November 2017

Accepted: 21 November 2017

DOI: 10.1002/clc.22856

WILEY **CLINICAL
CARDIOLOGY**

TRIAL DESIGNS

Effect of Vascepa (icosapent ethyl) on progression of coronary atherosclerosis in patients with elevated triglycerides (200–499 mg/dL) on statin therapy: Rationale and design of the EVAPORATE study

Matthew Budoff¹ | J. Brent Muhlestein^{2,3} | Viet T. Le² | Heidi T. May² | Sion Roy¹ | John R. Nelson⁴

STUDY DESIGN

- A randomized, double-blind, placebo-controlled EVAPORATE study was performed to evaluate the effects of icosapent ethyl 4 g/d on atherosclerotic plaque in statin-treated patients with coronary atherosclerosis
- TG levels of 135 to 499 mg/dL, and low-density lipoprotein cholesterol levels of 40 to 115 mg/dL

INCLUSION CRITERIA

1. Age ≥ 45 years with atherosclerosis with at least one stenosis of 20%
2. Fasting TG levels ≥ 150 mg/dL and < 500 mg/dL
3. LDL-C > 40 mg/dL and ≤ 100 mg/dL on stable statin therapy (\pm ezetimibe) for ≥ 4 weeks prior to qualifying measurements for randomization

Key Exclusion Criteria

- Severe (NYHA class IV) heart failure
- Contrast Allergy
- Renal Insufficiency (eGFR <60)
- Hypersensitivity to fish and/or shellfish

EVAPORATE: Effect of EPA on Improving Coronary Atherosclerosis in People With High Triglycerides Taking Statin Therapy

Randomized, Double-Blind, Placebo-Controlled Trial

Patient Population (N=~80)

- 30–85 years of age
- TG: 135–499 mg/dL
- LDL-C >40 mg/dL and ≤115 mg/dL (on statin)
- ≥1 angiographic stenosis with ≥20% narrowing by CTA
- No history of MI, stroke, or life-threatening arrhythmia within the prior 6 months and no history of CABG


Primary endpoint

- Progression rates of low attenuation plaque

Secondary endpoints include

- Plaque morphology and composition
- Markers of inflammation (Lp-PLA₂)
- LDL-C and HDL-C

Estimated Study Completion Date: September 2019

The EVAPORATE study seeks to determine whether IPE 4g/d will result in a greater change from baseline in plaque volume measured by serial multidetector computed tomography (MDCT) than placebo in statin-treated patients

CABG=coronary artery bypass graft; CTA=computed tomography angiography.

EVAPORATE Clinical Trial. <https://clinicaltrials.gov/ct2/show/NCT02926027>. Updated February 08, 2018. Accessed June 19, 2018.

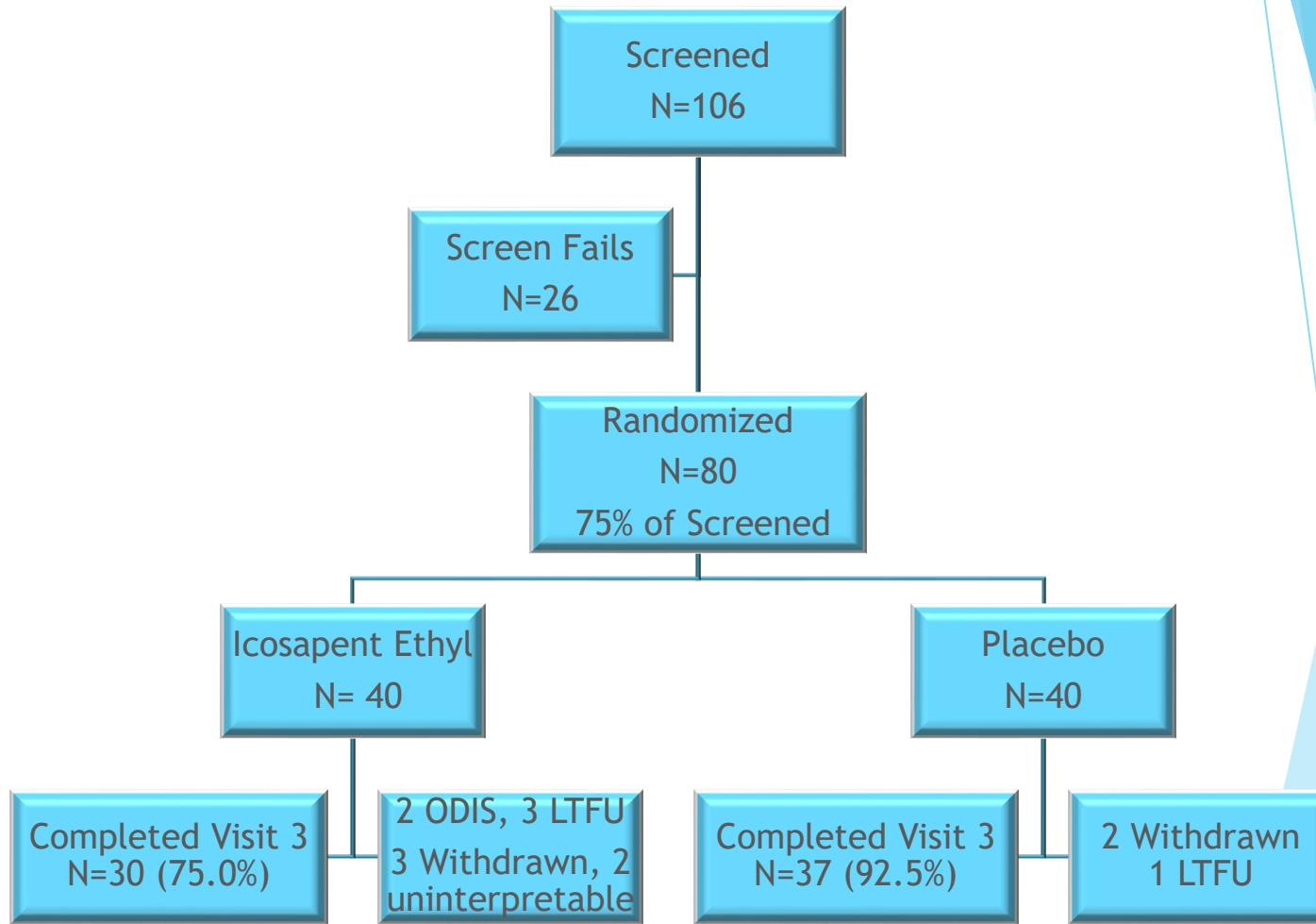
TABLE 2 EVAPORATE study endpoints

Primary endpoint

Change in low-attenuation plaque volume as measured by MDCTA and defined as –50 to 50 HU

Secondary endpoints

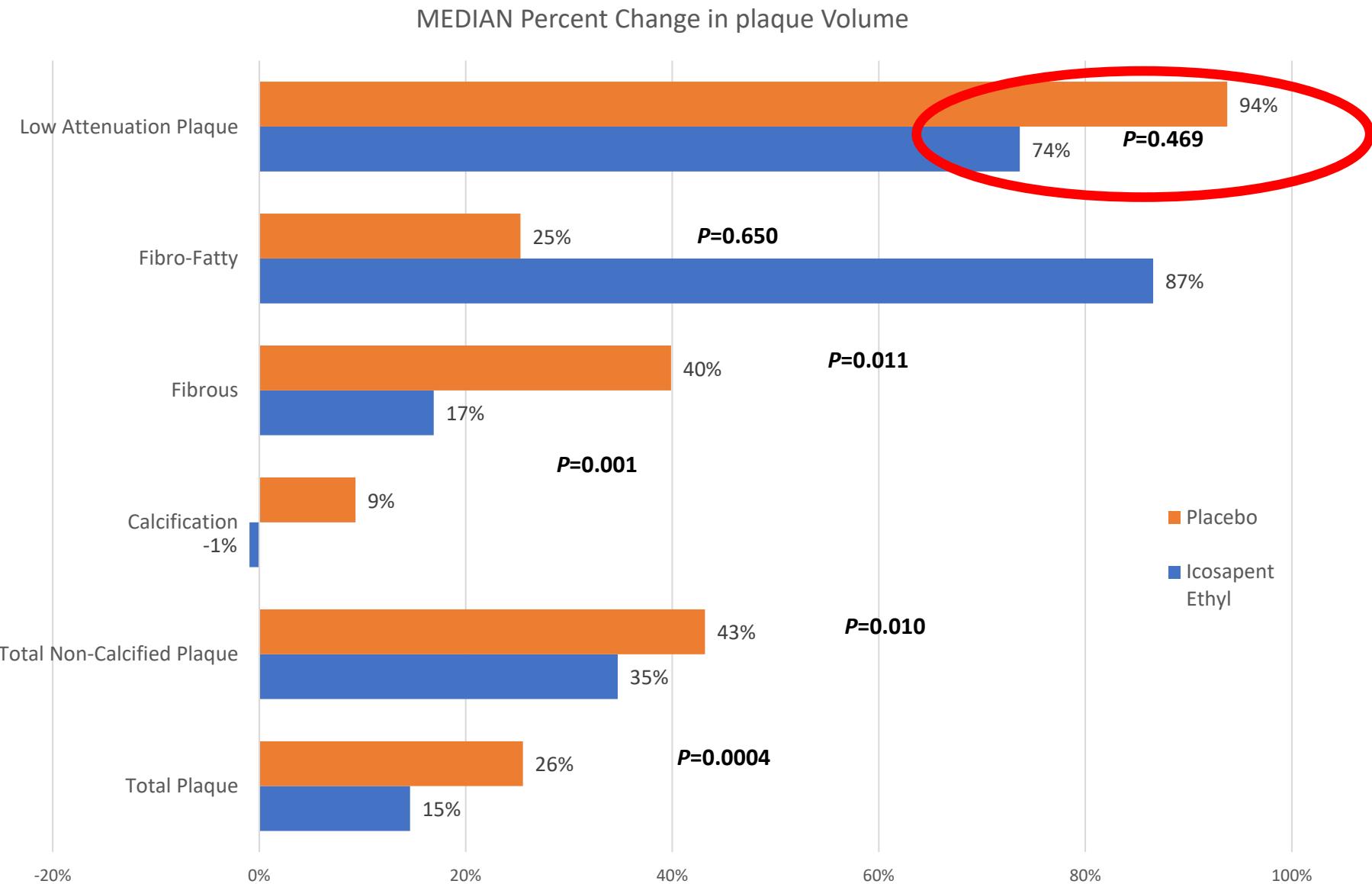
Incident plaque rates; quantitative changes in different plaque types and morphology


Changes in markers of inflammation including Lp-PLA₂ and hsCRP

Changes in lipids and lipoproteins including standard lipid panel, lipoproteins, remnants, Apo-A1/remnant ratio, EPA, AA, and EPA/AA ratio

Relationship between changes in the above with noncalcified coronary plaque burden and/or plaque-vulnerability features

Abbreviations: AA, arachidonic acid; Apo-A1, apolipoprotein A1; EPA, eicosapentaenoic acid; EVAPORATE, Effect of Vascepa on Improving Coronary Atherosclerosis in People With High Triglycerides Taking Statin Therapy study; hsCRP, high-sensitivity C-reactive protein; HU, Hounsfield


EVAPORATE Diagram

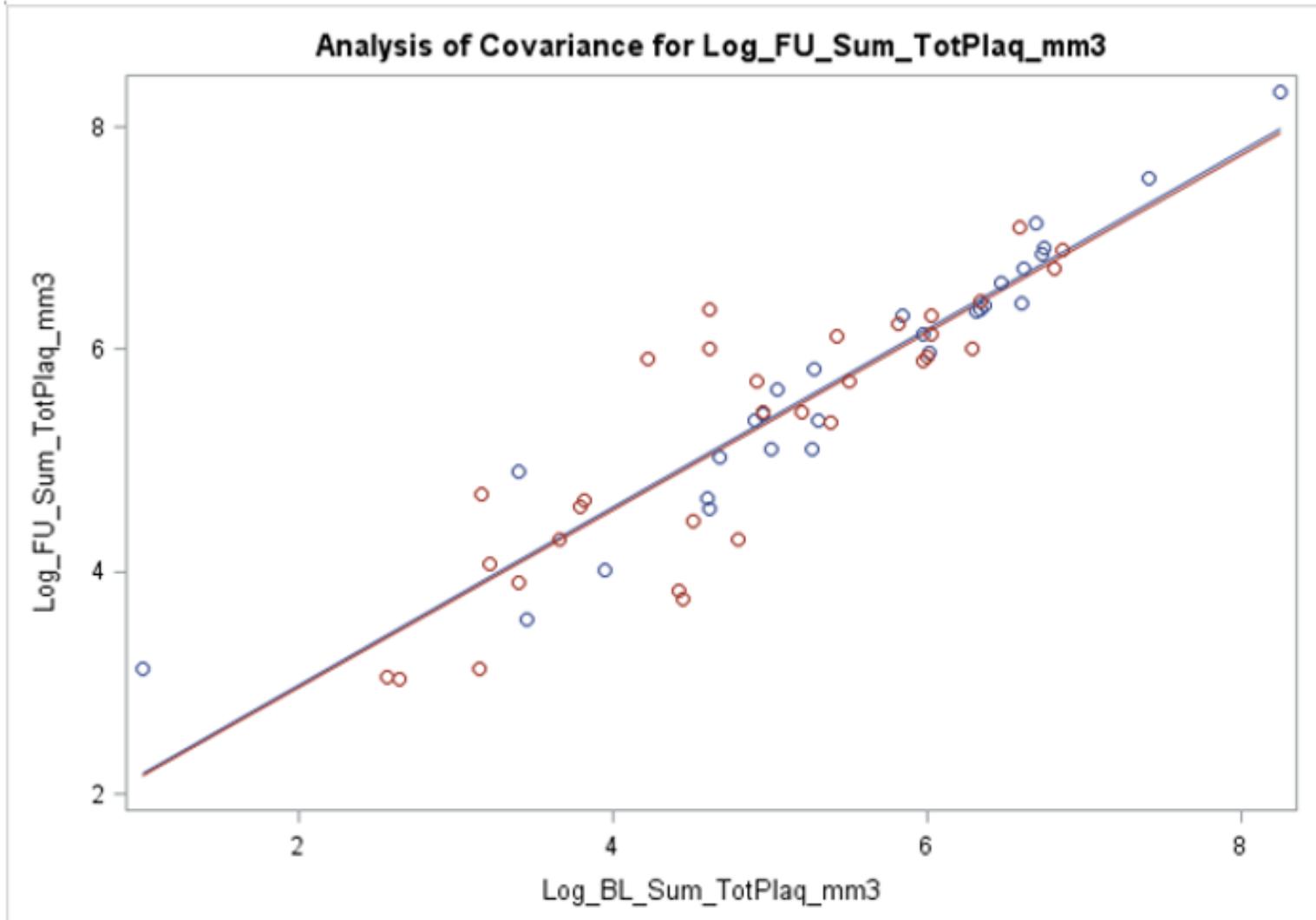
Key Baseline Characteristics

	Icosapent Ethyl (N=30)		Placebo(N=37)		
	Mean / Count	Std(%)	Mean / Count	Std(%)	p
Age, years	55.6	(7.7)	58.3	8.6	0.195
Male	16	(53%)	20	54%	0.953
BMI	34.4	(6.4)	33.3	6.9	0.531
Time between Visit 1 and 3 (months)	9.4	(1.0)	9.9	2.7	0.232
Ethnicity Hispanic	18	(60%)	19	51%	0.479
Race, White	27	(90%)	29	78%	0.595
Aspirin Use	14	(47%)	22	59%	0.296
Diabetic	22	(73%)	25	68%	0.608
Family History	8	(27%)	13	35%	0.458
Statin Use	30	(100%)	37	100%	1.000
Hypertension	23	(77%)	28	76%	0.925
Past Smoking	13	(43%)	16	43%	0.214

Fully adjusted median Plaque Progression at 9 months

TABLE 3: Plaque Changes by Treatment Group

PLAQUE TYPE	n	Baseline			Followup			Difference			ANCOVA		
		median	std	p*	median	std	p*	median	std	Δ%	unadj. P	adj. p	
Calcification	30	82.8	126.1	0.12	52.9	115.6	0.25	-0.8	47.0	-1%	0.0002	0.0010	
	Placebo	37	24.9	92.2	41.3	83.9		2.3	35.6	9%			
Fibrous	30	115.7	189.3	0.50	107.2	185.6	0.59	19.6	146.9	17%	0.008	0.0109	
	Placebo	37	57.1	125.0	116.1	126.0		22.8	63.8	40%			
Fibro-Fatty	30	15.1	56.5	0.88	38.1	73.3	0.92	13.1	39.5	87%	0.588	0.6500	
	Placebo	37	16.1	44.5	40.5	60.8		4.1	46.5	25%			
Low Attenuation Plaque	30	7.3	43.3	0.74	20.9	87.7	0.80	5.4	72.3	74%	0.390	0.4692	
	Placebo	37	5.4	45.0	16.1	82.4		5.1	83.4	94%			
Total Non-Calcified Plaque	30	143.7	269.4	0.55	203.4	311.3	0.58	49.9	141.2	35%	0.006	0.0103	
	Placebo	37	95.8	194.2	213.9	233.3		41.3	143.6	43%			
Total Plaque	30	259.1	339.6	0.31	279.7	390.8	0.34	37.9	226.6	15%	0.0002	0.0004	
	Placebo	37	136.9	260.8	235.0	286.4		34.9	146.0	26%			


Biomarker Effects from Baseline to 9months

	Icosapent Ethyl (N=30)		Placebo(N=37)		Mean Between Group Difference at 9 months		
	Visit 1	Visit 3	Visit 1	Visit 3	Absolute Δ from V1	%Δ from V1	P
Cholesterol	151.8	142.2	158.8	149.4	-0.3	0%	0.973
HDL	36.8	36.0	37.2	37.2	-0.8	-2%	0.530
LDL	89.2	85.4	92.4	88.2	0.3	0%	0.961
Triglycerides	190.9	156.7	199.8	183.7	-18.1	-9%	0.458
AA	265.5	213.5	263.3	265.0	-50.0	-19%	0.002
AA to EPA Ratio	13.6	4.9	11.1	13.2	-10.7	-88%	<.0001
Cholesterol	151.8	142.2	158.8	149.4	-0.3	0%	0.973
DHA	54.3	47.4	63.3	55.7	0.6	1%	0.913
EPA	20.8	89.3	29.9	21.9	77.0	298%	<.0001
LA	1015.9	861.6	1005.9	977.7	-135.6	-13%	0.046
Monounsaturated FA Index	25.5	24.2	24.9	25.5	-1.7	-7%	0.015
Omega3 FA Index	2.1	4.6	2.7	2.2	2.9	121%	<.0001
Omega6 FA Index	38.2	35.1	37.4	37.7	-3.7	-10%	0.024
Omega6 to 3 Ratio	20.2	10.3	16.8	19.4	-12.5	-68%	<.0001
hsCRP	4.6	5.0	3.8	3.2	0.9	22%	0.7583

RESULTS

- At 9 Month Prespecified Timepoint, compared with placebo, icosapent ethyl slowed progression by:
 - **21%** for low attenuation plaque ($p=0.469$)
 - **42%** for total plaque ($p=0.0004$)
 - **19%** for total non-calcified plaque ($p=0.010$)
 - **57%** for fibrous plaque ($p=0.011$)
 - **89%** for calcified plaque ($p=0.001$)
 - No Effect on Fibrofatty plaque ($p=0.650$)
- Consistent efficacy across multiple subgroups
- Including baseline triglycerides from 135-500 mg/dL

PLACEBO RATES OF PROGRESSION

Cohort Key: GARLIC5 EVAPORATE

LIMITATIONS

- Shorter Follow up than Prior CTA Studies (9 months)
- Primary Endpoint not significant at interim timepoint – study will continue to 18 months as planned
- 4 of 5 secondary endpoints demonstrated significant slowing of progression
- Small cohort with expected 15% drop-out (due to patient preference and non-diagnostic CT at baseline or follow up)

EVAPORATE: Conclusions

- First study using MDCT to evaluate the effects of IPE as adjunct to statin on plaque characteristics in a population with high TG levels demonstrating significant changes in most plaque markers at 9 months, and study is continuing to 18 months as planned
- Demonstrated that progression rates on mineral oil placebo is similar to non-mineral oil placebo cohort using same methodology, scanner and laboratory
- Important data to understand a mechanism of benefit of icosapent ethyl