

Cost-Effectiveness of Low-Dose Colchicine after Myocardial Infarction in the COLchicine Cardiovascular Outcomes Trial (COLCOT)

Michelle Samuel MPH, PhD
Post-Doctoral Fellow

Michelle Samuel MPH PhD, Jean-Claude Tardif MD, Paul Khairy MD PhD, François Roubille MD PhD, David D Waters MD, Jean C Grégoire MD, Fausto J Pinto MD PhD, Aldo P Maggioni MD, Rafael Diaz MD, Colin Berry MD PhD, Wolgang Koenig MD, Petr Ostadal MD PhD, Jose Lopez-Sendon MD, Habib Gamra MD, Ghassan S Kiwan MD, Marie-Pierre Dubé PhD, Mylène Provencher PhD, Andreas Orfanos MBBCh, Lucie Blondeau MSc, Simon Kouz MD, Philippe L L'Allier MD, Reda Ibrahim MD, Nadia Bouabdallaoui MD, Dominic Mitchell PhD, Marie-Claude Guertin PhD, Jacques LeLorier MD PhD

Disclosures

Nothing to disclose

ORIGINAL ARTICLE

Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction

Jean-Claude Tardif, M.D., Simon Kouz, M.D., David D. Waters, M.D., Olivier F. Bertrand, M.D., Ph.D., Rafael Diaz, M.D., Aldo P. Maggioni, M.D., Fausto J. Pinto, M.D., Ph.D., Reda Ibrahim, M.D., Habib Gamra, M.D., Ghassan S. Kiwan, M.D., Colin Berry, M.D., Ph.D., José López-Sendón, M.D., Petr Ostadal, M.D., Ph.D., Wolfgang Koenig, M.D., Denis Angoulvant, M.D., Jean C. Grégoire, M.D., Marc-André Lavoie, M.D., Marie-Pierre Dubé, Ph.D., David Rhainds, Ph.D., Mylène Provencher, Ph.D., Lucie Blondeau, M.Sc., Andreas Orfanos, M.B., B.Ch., Philippe L. L'Allier, M.D., Marie-Claude Guertin, Ph.D., and François Roubille, M.D., Ph.D.

¹Tardif JC et al. *N Engl J Med.* 2019; 381:2497-2505.

Overview of COLCOT¹

- Randomized, double-blind, placebo-controlled trial
- Patients who had a myocardial infarction ≤30 days were randomized 1:1 to low dose colchicine (0.5 mg per day) or placebo
- 4,745 randomized patients (Colchicine: N=2,366 and Placebo: N=2,379)
- Follow-up: 2 years
- Primary composite endpoint included:
 - Death from cardiovascular causes
 - Resuscitated cardiac arrest
 - Myocardial infarction
 - Stroke
 - Urgent hospitalization for angina leading to revascularization

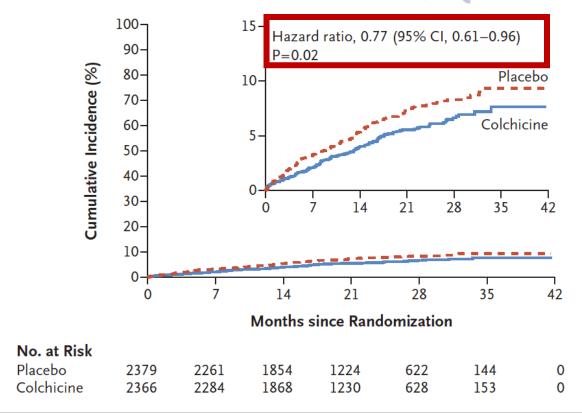


Figure 2. Cumulative Incidence of Cardiovascular Events (Intention-to-Treat Population).

Shown are the Kaplan–Meier event curves for the primary efficacy composite end point of death from cardiovascular causes, resuscitated cardiac arrest, myocardial infarction, stroke, or urgent hospitalization for angina leading to coronary revascularization in the colchicine group and the placebo group in a time-to-event analysis. The inset shows the same data on an enlarged y axis.

COLCOT

Present Study

Objective

To assess the in-trial period and lifetime cost-effectiveness of low-dose colchicine compared to placebo in post-MI patients on standard-of-care therapy

Primary Methods

- Multi-state Markov model
- Based on the intent-to-treat results of COLCOT
- 1st and 2nd events included in base case model
- Deterministic approach was used to calculate the incremental cost-effectiveness ratio (ICER)
- In-trial (2-year) and lifetime (20 year) ICERs
- Canadian (primary) and United States perspectives

Health States in Markov Model

End Point	Colchicine (N = 2366)	Placebo (N = 2379)	Hazard Ratio (95% CI)	P Value
	number (percent)		
Primary composite end point	131 (5.5)	170 (7.1)	0.77 (0.61–0.96)	0.02†
Components of primary end point				
Death from cardiovascular causes	20 (0.8)	24 (1.0)	0.84 (0.46–1.52)	
Resuscitated cardiac arrest	5 (0.2)	6 (0.3)	0.83 (0.25-2.73)	
Myocardial infarction	89 (3.8)	98 (4.1)	0.91 (0.68-1.21)	
Stroke	5 (0.2)	19 (0.8)	0.26 (0.10-0.70)	
Urgent hospitalization for angina lead- ing to revascularization	25 (1.1)	50 (2.1)	0.50 (0.31–0.81)	
Secondary composite end point‡	111 (4.7)	130 (5.5)	0.85 (0.66–1.10)	·
Death	43 (1.8)	44 (1.8)	0.98 (0.64–1.49)	
Deep venous thrombosis or pulmonary embolus	10 (0.4)	7 (0.3)	1.43 (0.54–3.75)	
Atrial fibrillation	36 (1.5)	40 (1.7)	0.93 (0.59–1.46)	

^{*} Only the initial event was counted in the analyses of time to first event for the primary composite end point and for the secondary composite end point. In the component analysis, the different types of events were counted separately.

Event	Colchicine (N = 2330)	Placebo (N = 2346)	P Value	
	number of patients (percent)			
Any related adverse event†	372 (16.0)	371 (15.8)	0.89	
Adverse events				
Gastrointestinal event	408 (17.5)	414 (17.6)	0.90	
Diarrhea	225 (9.7)	208 (8.9)	0.35	
Nausea	43 (1.8)	24 (1.0)	0.02	
Flatulence	15 (0.6)	5 (0.2)	0.02	
Gastrointestinal hemorrhage	7 (0.3)	5 (0.2)	0.56	
Anemia	14 (0.6)	10 (0.4)	0.40	
Leukopenia	2 (0.1)	3 (0.1)	0.66	
Thrombocytopenia	3 (0.1)	7 (0.3)	0.21	
Serious adverse events				
Any serious adverse event‡	383 (16.4)	404 (17.2)	0.47	
Gastrointestinal event	46 (2.0)	36 (1.5)	0.25	
Infection	51 (2.2)	38 (1.6)	0.15	
Pneumonia	21 (0.9)	9 (0.4)	0.03	
Septic shock	2 (0.1)	2 (0.1)	0.99	
Hospitalization for heart failure	25 (1.1)	17 (0.7)	0.21	
Cancer∫	43 (1.8)	46 (2.0)	0.77	

[†] The log-rank test and the multivariable Cox proportional-hazards model including age, history of diabetes, previous coronary revascularization, and previous heart failure yielded similar P values.

[†] The secondary composite end point included death from cardiovascular causes, resuscitated cardiac arrest, myocardial infarction, and stroke.

Cost Inputs (Canadian Perspective- single payer)

Event / Medication	Base value
Colchicine (per pill) ¹	\$0.26
Acute event costs ²	
Resuscitated cardiac arrest	\$9,673
Myocardial infarction	\$7,769
Stroke	\$10,224
Coronary revascularization	
Coronary artery bypass graft surgery	\$24,283
Percutaneous coronary intervention	\$8,894
Pneumonia	\$8,206
Long-term follow-up costs	
Resuscitated cardiac arrest ³	\$458
Myocardial infarction ⁴	\$766
Stroke ⁵	\$1,557
Coronary artery bypass graft surgery ³	\$1,276
Percutaneous coronary intervention ³	\$766

⁷

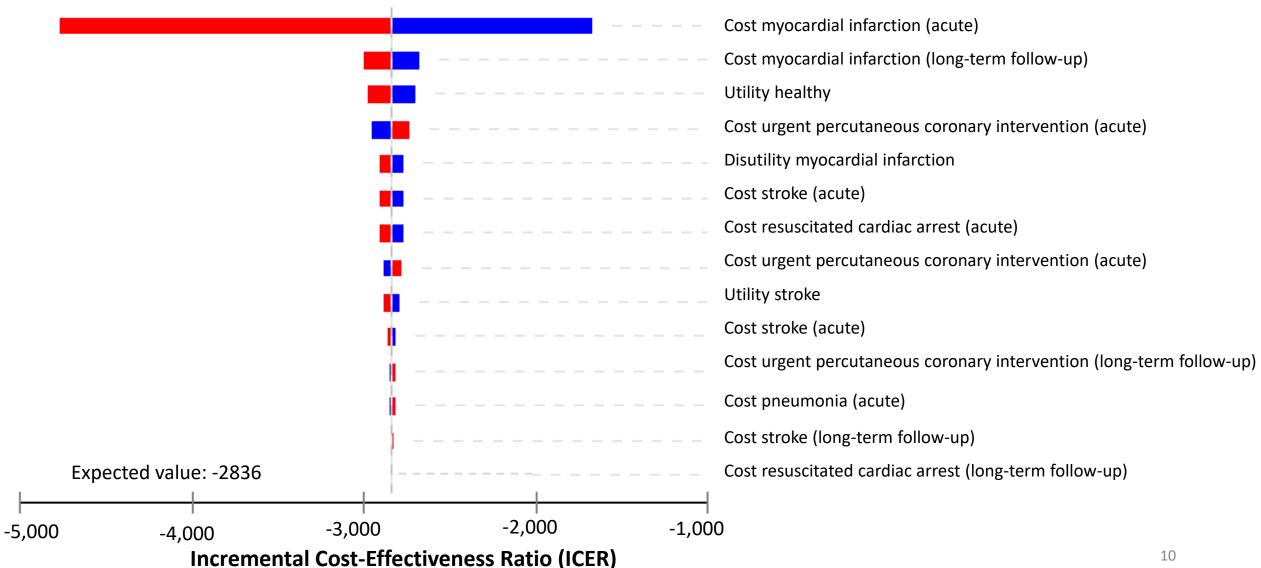
Utility Inputs

Utilities/Disutilities	Base value		
Baseline utility ¹	0.682		
Disutilities			
Resuscitated cardiac arrest ²	0.101		
Myocardial infarction ¹	0.147		
Stroke ¹	0.178		
Coronary revascularization ³			
Coronary artery bypass graft surgery	0.090		
Percutaneous coronary intervention	0.060		
Pneumonia ⁴	0.020		

Mean age in trial= 60 years (Utility=0.829)

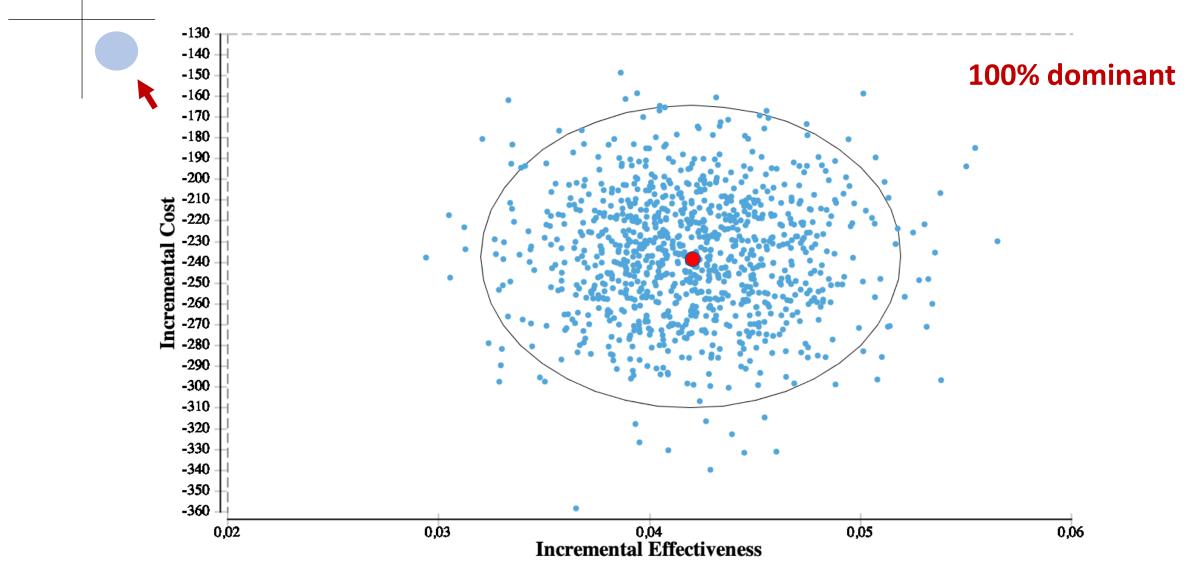
All patients had a prior MI (Disutility= 0.147)

In-Trial (2-year) ICERs


Analysis	Average cost, CAD \$			Average QALYs Gained			ICER [†]
	Colchicine	Placebo	Difference*	Colchicine	Placebo	Difference*	
Base case Primary endpoints, non-CV deaths, and pneumonia 1st and 2nd (recurrent) events	\$265	\$502	-\$237 47%	1.34	1.30	0.04	Dominant
Sensitivity analyses	'				•		
Base case and inclusion of all recurrent events	\$265	\$494	-\$222	1.34	1.30	0.04	Dominant
Base case and inclusion of tertiary endpoint: all coronary revascularizations	\$745	\$855	-\$111	1.30	1.29	0.01	Dominant
Base case and inclusion of: all coronary revascularization and all recurrent events	\$749	\$858	-\$98	1.30	1.29	0.01	Dominant

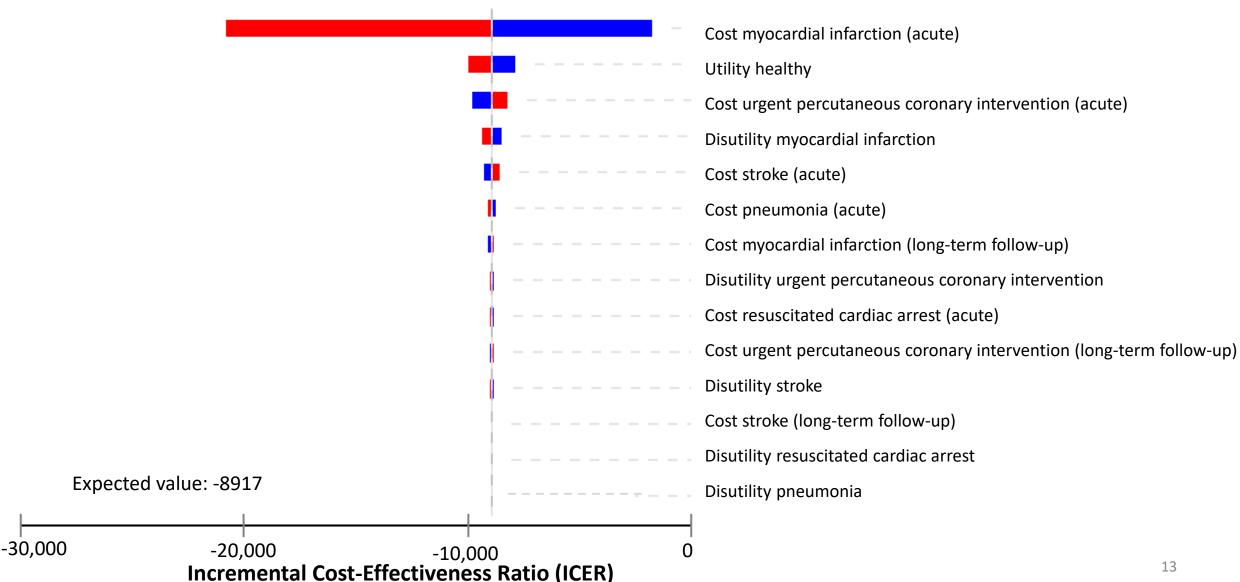
^{*}Differences compare average costs and QALYs of colchicine to placebo.

[†] Dominant ICERs are not presented and results from lower costs and higher QALYs for colchicine.



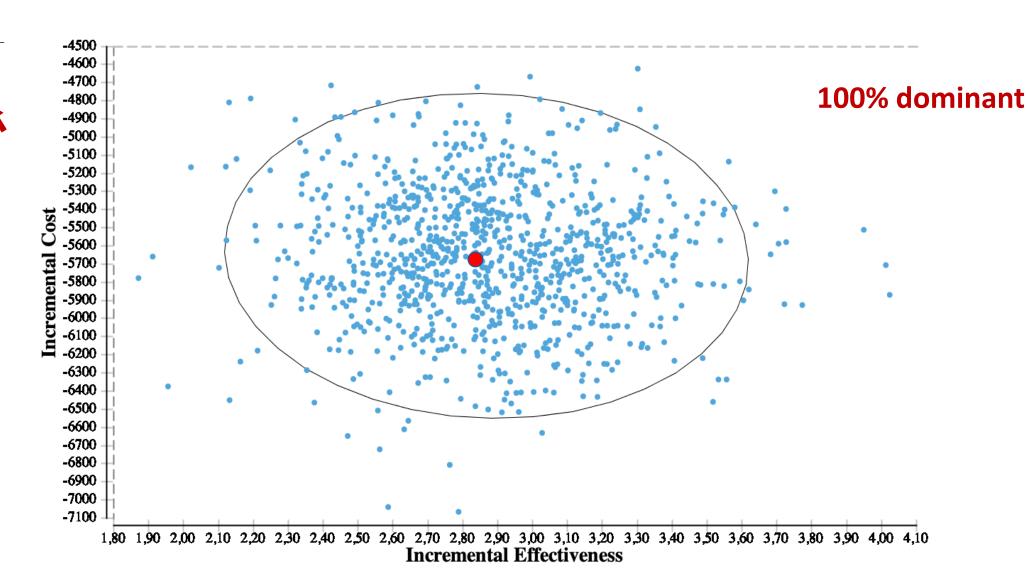
1-way Sensitivity Analysis: In-Trial

Probabilistic: In-Trial Incremental Cost-Effectiveness

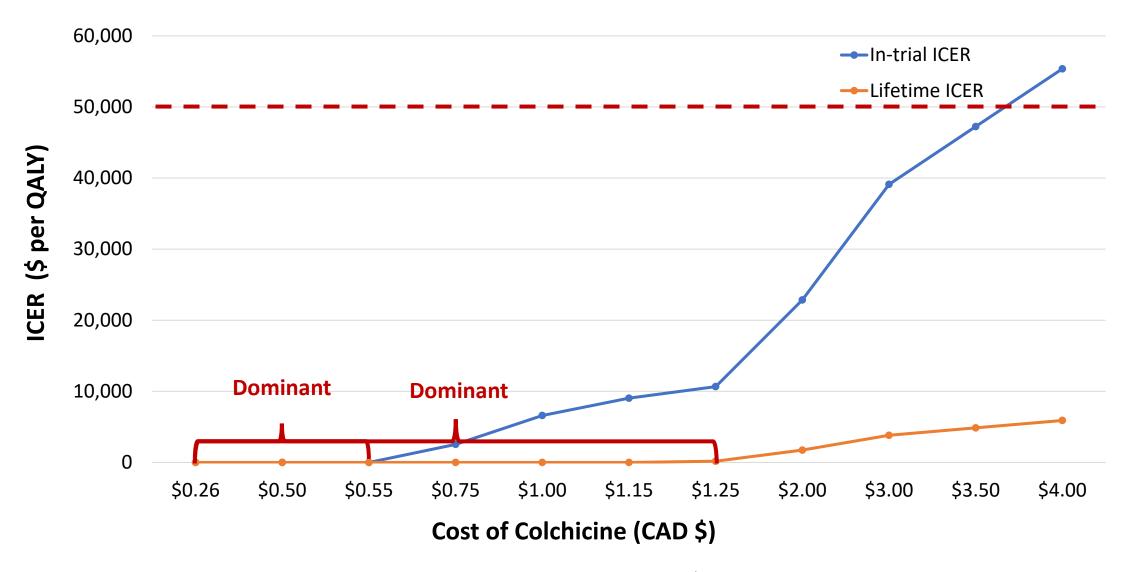


Lifetime (20-year) ICERs

Analysis	Average cost, CAD \$			Avera	ICER [†]		
	Colchicine	Placebo	Difference*	Colchicine	Placebo	Difference*	
Base case Primary endpoints, non-CV deaths, pneumonia 1st and 2nd (recurrent) events	\$2,590	\$8,239	-\$5,647 69%	11.68	8.82	2.86	Dominant
Sensitivity analyses							
Base case and inclusion of all recurrent events	\$2,597	\$8,172	-\$5,539	11.69	8.73	2.96	Dominant
Base case and inclusion of tertiary endpoint: all coronary revascularizations	\$13,737	\$14,175	-\$438	8.51	7.98	0.53	Dominant
Base case and inclusion of: all coronary revascularizations and all recurrent events	\$13,825	\$14,284	-\$400	8.51	7.98	0.53	Dominant

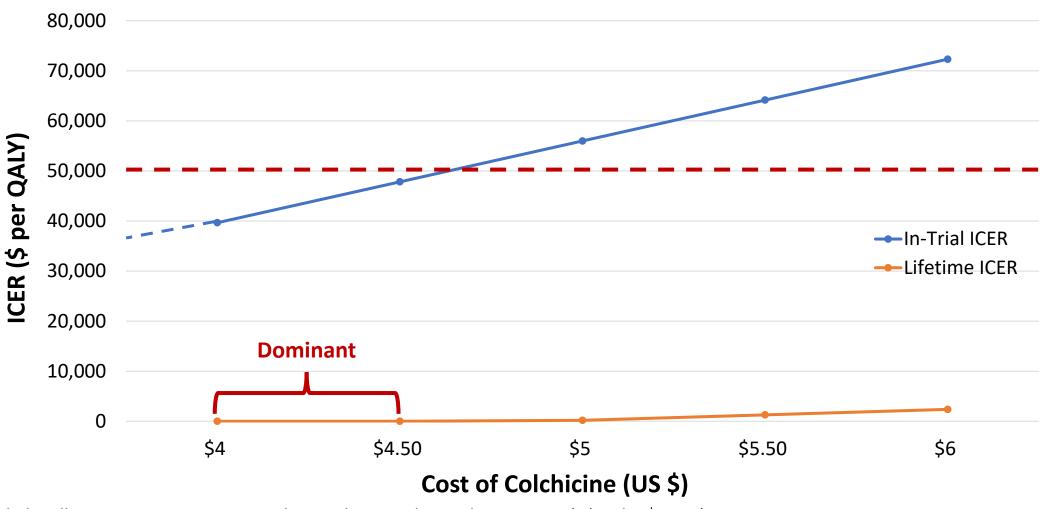


1-way Sensitivity analysis: Lifetime



Probabilistic: Lifetime Incremental Cost-Effectiveness

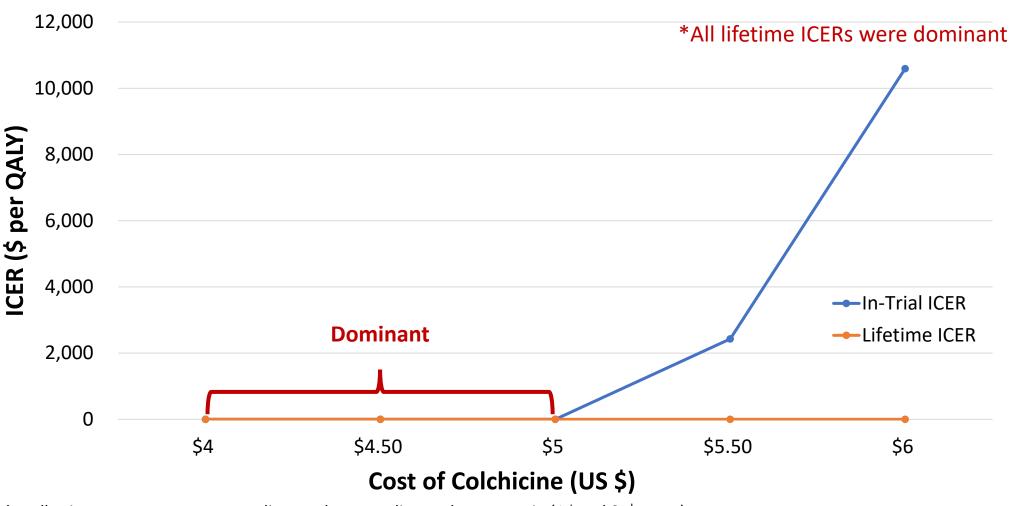
Varying the Cost of Colchicine (Canada)



^{*}Base case includes all primary outcomes, non-cardiovascular mortality, and pneumonia (1st and 2nd event)

¹⁵

US Cost-Effectiveness: Medicare


^{*}Base case includes all primary outcomes, non-cardiovascular mortality, and pneumonia (1st and 2nd event)

^{**}The price points of maximum dominance and maximum cost effectiveness were the same when all recurrent events were included

¹ Analytics TH. Red Book Online. https://truvenhealth.come/Portals/0/Assets/Brochures/InternationalINTL 12543 0413)RedbookPS WEB1.pdf. ²Healthcare cost and utilization profect. https://hcupnet.ahrq.gov. ³Centers for Medicare and Medicaid Services. https://www.cms.gov/app/physician-fee-schedule/overview.

US Cost-Effectiveness: Private Insurance

^{*}Base case includes all primary outcomes, non-cardiovascular mortality, and pneumonia (1st and 2nd event)

^{**}The price points of maximum dominance and maximum cost effectiveness were the same when all recurrent events were included

¹ Analytics TH. Red Book Online. https://truvenhealth.come/Portals/0/Assets/Brochures/InternationalINTL 12543 0413 RedbookPS WEB1.pdf. ²Wallace PJ et al. Health Aff (Millwood). 2014;33(7):1187-1194.

Limitations

- Utility and disutility measures were obtained from published literature on populations that closely resembled the COLCOT study population
- The magnitude of disutility for recurrent events were assumed same as the disutility for the 1st event (few published studies measure utilities and disutilities for recurrent events)- underestimates costeffectiveness
- Effect estimates based on COLCOT (2-year study) and assumed hazards were constant over 20-year lifetime perspective

Conclusions

- From the Canadian healthcare system perspective, the addition of low-dose colchicine (0.5 mg daily) to standard of care therapy after MI is **economically dominant**
 - Mean overall per patient costs reduced by 47% for the in-trial period and 69% for the lifetime period
 - Quality adjusted life years (QALYs) increased

- From the US Medicare system perspective, low-dose colchicine therapy post- MI was cost-effective (<\$50,000 per QALY) for the in-trial period and economically dominant at a price of <\$5 per pill
- From the US private insurance system perspective, low-dose colchicine post-MI was economically dominant at ≤\$5 per pill for the in-trial period and \$4-6 per pill for the lifetime period

Thank You

Michelle Samuel MPH PhD
Post Doctoral Fellow, Cardiovascular Epidemiology

Email: michelle.samuel@mhi-rc.org

Jean-Claude Tardif MD
Principal Investigator for COLCOT
Director of the Research Center at the MHI

Email: <u>Jean-Claude.Tardif@icm-mhi.org</u>

