

Physiology-Guided Optimization of PCI A Randomized Controlled Trial

Damien Collison

Golden Jubilee National Hospital and University of Glasgow, United Kingdom, on behalf of the TARGET FFR investigators

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship Company

Consulting Fees/Honoraria Abbott Medical, MedAlliance

Faculty disclosure information can be found on the app

Background (i)

- Higher post-PCI FFR values are associated with a reduced incidence of adverse clinical events¹
- A systematic review and meta-analysis of 7470 patients found that post-PCI FFR ≥0.90 is associated with a lower risk of repeat PCI and major adverse cardiovascular events²
- In previous studies, the proportion of patients actually achieving final FFR ≥0.90 ranges from 21% to 100%

Background (ii)

• The proportion of patients with post-PCI FFR ≤0.80 ranges from <1% to 36%³

- Up to 38% of patients still report angina 1 year after PCI⁴
- Given its apparent frequency, randomized data are required on both the incidence of functionally sub-optimal PCI and the efficacy of strategies to address it

³ Uretsky et al. J Am Heart Assoc 2020;9(3):e015073.

⁴ Stone et al. Lancet 2018;392(10157):1530-40.

Trial of Angiography versus pressure-Ratio-Guided Enhancement Techniques (TARGET) FFR

- Design: Investigator-initiated, single-center RCT
- Hypothesis: Application of a physiology-guided incremental optimization strategy (PIOS) can increase the proportion of patients achieving a final post-PCI FFR ≥0.90
- Power & Sample Size Calculation: We estimated the PIOS intervention would increase the proportion of patients with final post-PCI FFR ≥0.90 by 20%. A sample size of 130 per group would have 90% power to detect this difference at the 5% significance level

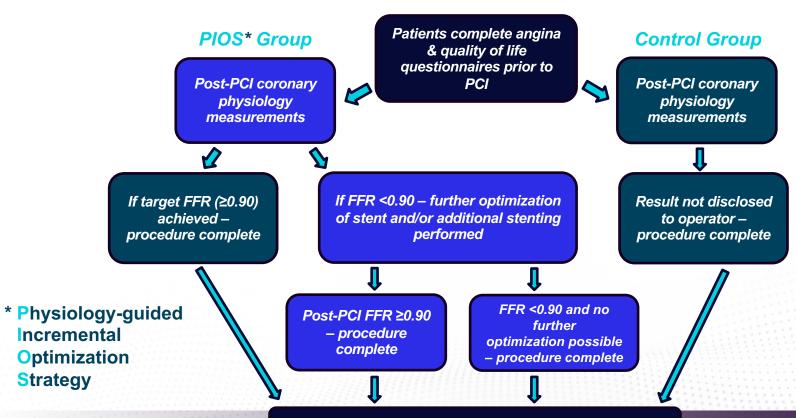
Trial Design

- Informed consent prior to PCI
- Pre-PCI coronary physiology assessment
- PCI performed according to local practice
- Patients randomized after operator declares angiographically-guided procedure to be successful and complete
- Control Group: Blinded post-PCI coronary physiology assessment
- PIOS Group: Blinded post-PCI coronary physiology assessment; if FFR <0.90 results disclosed and further protocol-guided optimization performed based on the hyperemic pullback assessment.
- Core Lab coronary physiology analysis (CoreAalst BV, Belgium)

Inclusion & Exclusion Criteria

Inclusion Criteria

- Patients >18 years of age with coronary artery disease including stable angina and NSTEMI
- Participants must be able to provide informed consent


Exclusion Criteria

- PCI in a coronary artery bypass graft
- PCI to an In-Stent Restenosis lesion
- PCI to a target artery providing Rentrop Grade 2 or 3 collateral blood supply to another vessel

- Inability to receive adenosine (for example, severe reactive airway disease, marked hypotension, or advanced atrioventricular block without pacemaker).
- Recent (within 1 week prior to cardiac catheterisation) STEMI in any arterial distribution (not specifically target lesion).
- Severe cardiomyopathy (LVEF <30%).
- Renal insufficiency such that an additional 20 to 30 mL of contrast would, in the opinion of the operator, pose unwarranted risk to the patient.

Study Flowchart

Randomized patients repeat questionnaires at 3 months

TCT CONNECT

Physiology-guided Incremental Optimization Strategy

FFR <0.90 and hyperemic pullback shows diffuse atherosclerosis with no focal step-ups: Result accepted, no optimization attempted

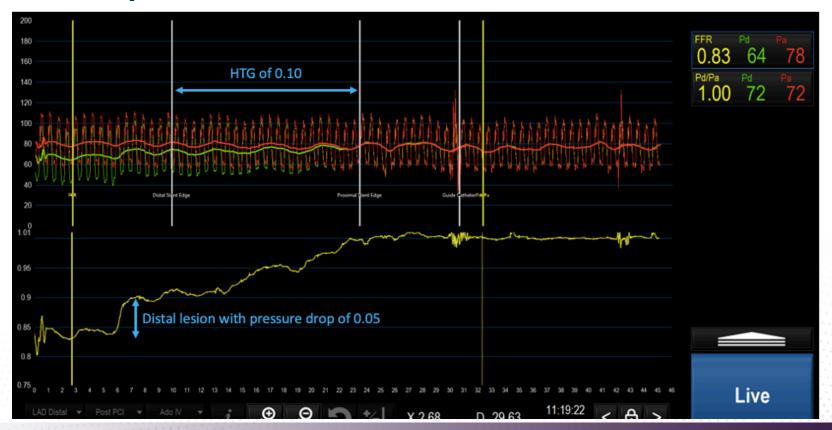
Diffuse Gradient

Hyperemic trans-stent gradient (HTG) ≥0.05: Post-dilation with larger NC balloon to 18atm. Intracoronary imaging at operator discretion. Repeat hyperemic pullback

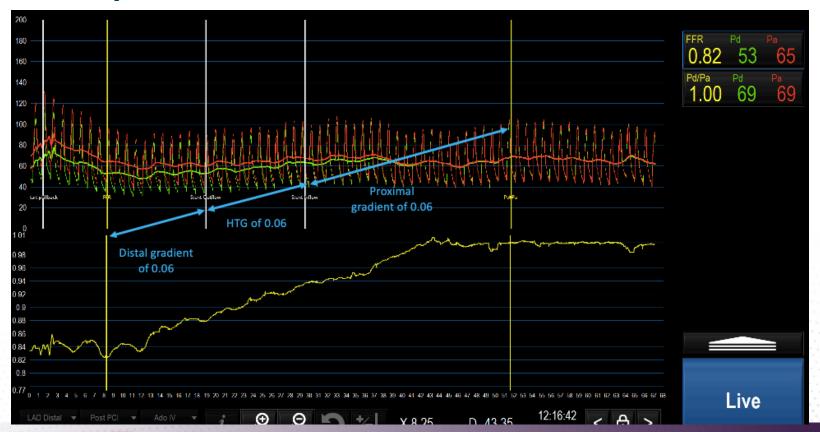
HTG ≥0.05

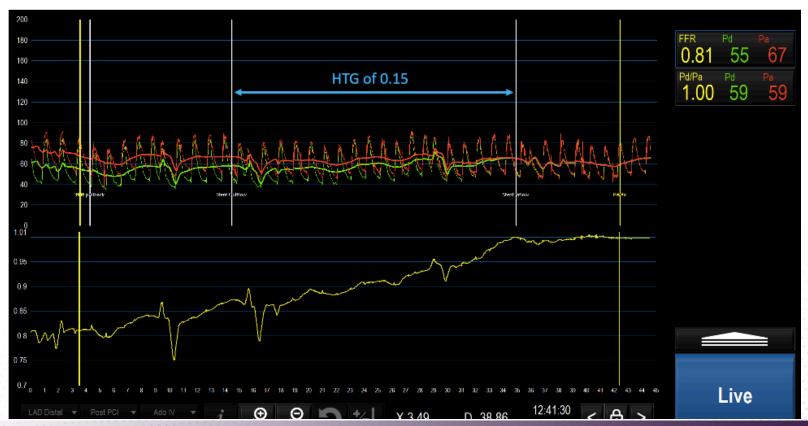
Focal FFR increase ≥0.05 within an unstented segment <20mm: Deploy additional stent. Repeat hyperemic pullback

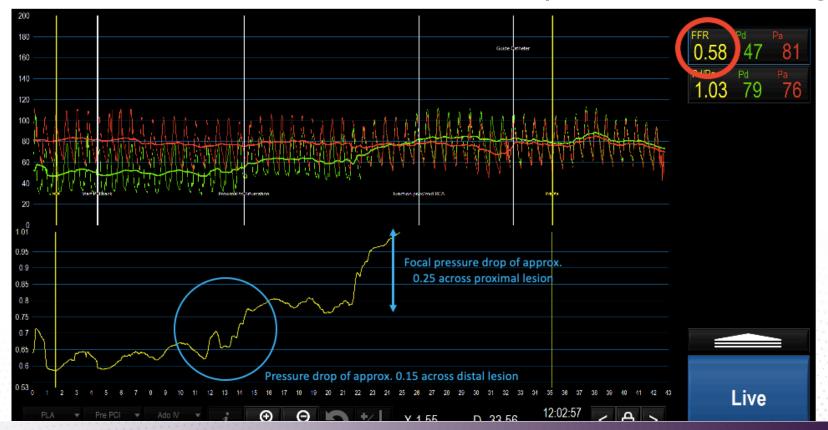
Focal Step ≥0.05

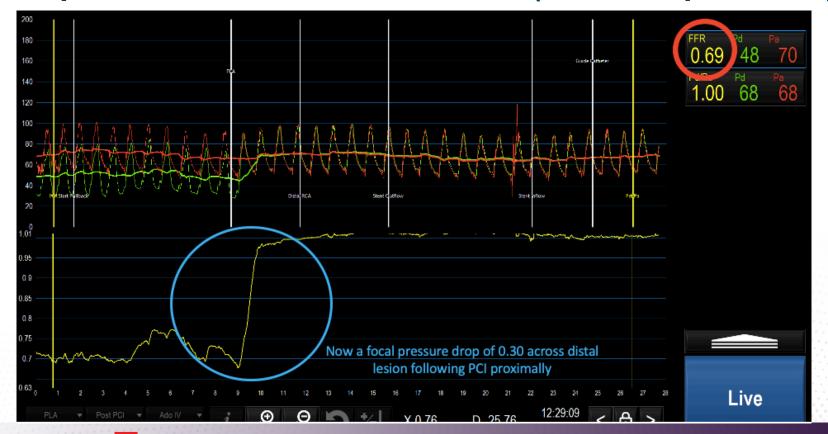

FFR still <0.90: Repeat hyperemic pullback. If either of the above criteria remain, option of further post-dilation or one more additional stent

Final hyperemic pullback


Example 1: Residual Focal Lesion and HTG > 0.05


Example 2: HTG ≥0.05 & Diffuse Residual Gradient


Example 3: Underexpanded Long Stent


Example 4: Unmasked Distal Lesion (Pre-PCI proximally)

Example 4: Unmasked Distal Lesion (Post-PCI proximally)

Consort Diagram

721 patients 22/02/2018 - 22/11/2019 consented FFR Negative - 55 (7.6%) Angiogram cancelled - 6 (0.8%) Referred for Surgery - 21 (2.9%) Referred to MDT - 100 (13.9%) CTO for staged PCI - 7 (1%) Medical Tx of CAD - 90 (12.5%) NOCAD on Angiogram - 71 (9.8%) 371 patients proceeded to PCI STO: no pre-PCI CFR/IMR - 32 (4.4%) Unable to pass pressure wire - 3 (0.4%) TO: no pre-PCl physiology - 10 (1.4%) Patient withdrew consent - 3 (0.4%) Exclusion Criteria - 17 (2.4%) Balloon Angioplasty only - 2 (0.3%) Operational Reasons - 15 (2.1%)

Operator Declined - 10 (1.4%) latrogenic Complication - 9 (1.2%)

260 patients randomized

- Adenosine Intolerance 1 (0.1%)
- Failed PCI 2 (0.3%)
- Miscellaneous 7 (0.9%)

CAD: Coronary Artery Disease CTO: Chronic Total Occlusion CFR: Coronary Flow Reserve

IMR: Index of Microcirculatory Resistance MDT: Multi-Disciplinary Team meeting **NOCAD: Non-Obstructive Coronary Artery Disease**

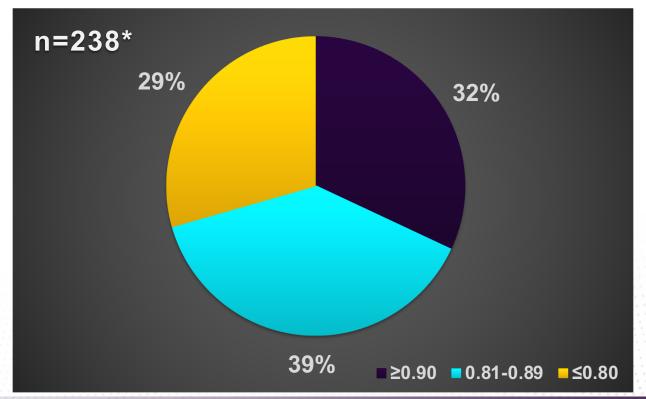
Results – Baseline Demographics

	PIOS (n=131)	Control (n=129)
Male	117 (89.3%)	109 (84.5%)
Age	58 (54-66)	60 (55-68)
ВМІ	29 (26-32)	29 (27-32)
Hypertension	58 (44.3%)	58 (45%)
Dyslipidemia	72 (55%)	74 (57.4%)
Diabetes	24 (18.3%)	25 (19.4%)
Atrial Fibrillation	10 (7.6%)	9 (7%)
Previous TIA/Stroke	8 (6.1%)	9 (7%)

	PIOS (n=131)	Control (n=129)
CKD	3 (2.3%)	2 (1.6%)
Family History of CAD	88 (67.2%)	84 (65.1%)
History of Smoking	92 (70.2%)	91 (70.5%)
Heart Failure	27 (20.6%)	15 (11.6%)
Previous MI	37 (28.2%)	40 (31%)
Previous PCI	52 (39.7%)	46 (35.7%)
Previous CABG	1 (0.8%)	0
Valvular Heart Disease	2 (1.5%)	5 (3.9%)

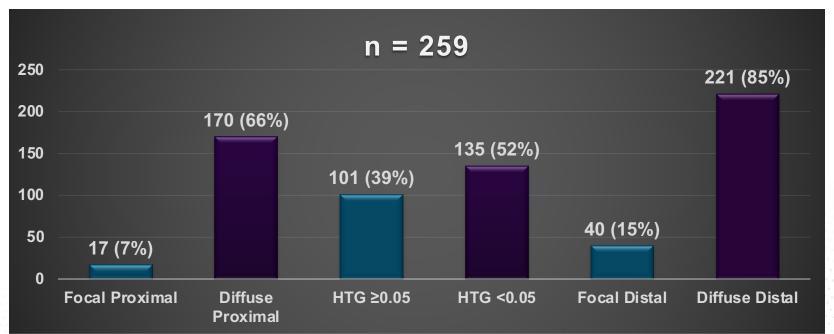
Index PCI - Procedural Details (i)

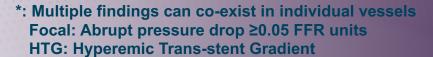
	PIOS (131)	Control (129)	P value
QCA Diameter Stenosis (%)	66±14	66±16	.89
QCA Area Stenosis (%)	86±13	86±12	.96
QCA Lesion Length (mm)	12±5	12±6	.59
Multivessel PCI (%)	13	8.5	.25
PCI performed on PW (%)	24	25	.94
Rotational Atherectomy (%)	1.5	3.9	.24
Pre-dilation (%)	100	100	ns
Post-dilation (%)	99	97	.17
Intravascular Imaging (%)	13.0	19.4	.07



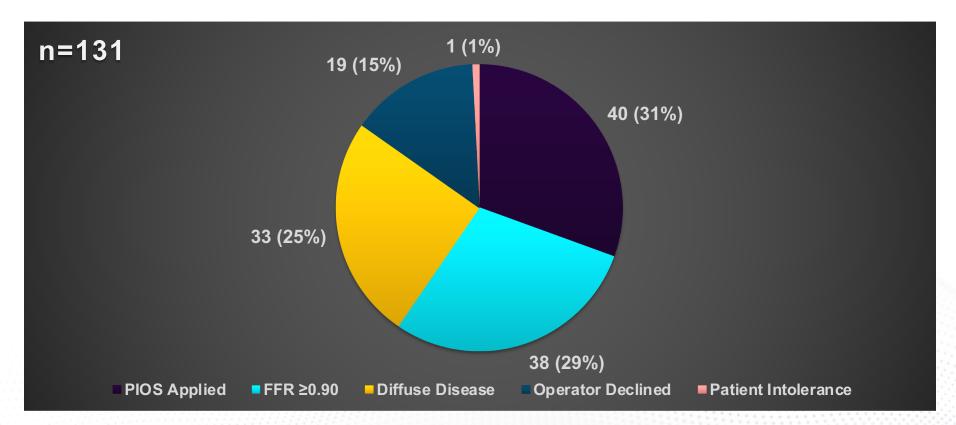
Index PCI - Procedural Details (ii)

	PIOS (131)	Control (129)	P value
Target Lesion Stent Diameter (mm)	3.21±0.43	3.25±0.43	.45
Target Lesion Stent Length (mm)	31±10	31±10	.94
>1 Stent Deployed (%)	26.7	34.1	.20
Total Stent Number in Target Artery (n)	1.5±0.7	1.4±0.6	.49
Total Stent Length in Target Artery (mm)	42±21	41±19	.67
Post-Dilation Balloon Diameter (mm)	3.72±0.58	3.79±0.58	.33
Post-Dilation Pressure (atm)	17±3	17±2	.74
Diameter Difference PD Balloon to Stent	0.5±0.4	0.5±0.4	.63


Angiographically-Guided Post-PCI FFR (pre-randomization)

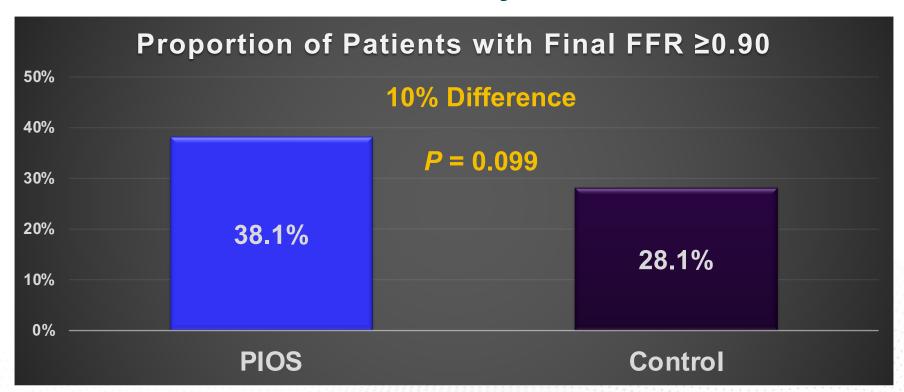


Post-PCI Hyperemic Pullback Assessment* (pre-randomization)



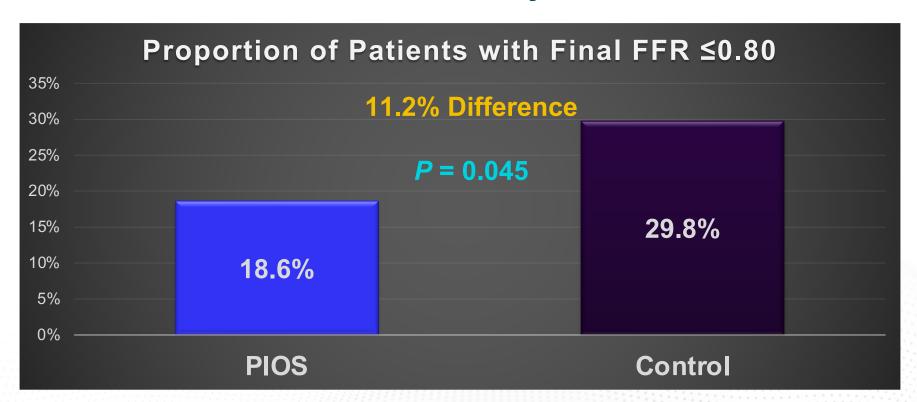
Outcomes of Patients Randomized to PIOS

Physiological Effect of PIOS Intervention


	Initial Post-PCI	Final Post-PCI	Difference	P value
FFR	0.76±0.08	0.82±0.06	0.06±0.07	<.001
CFR	3.0±1.6	4.0±2.1	1.0±2.2	.02
IMR	20±8	18±7	-3±8	.08
IMRc	19±7	17±7	-2±8	.17

- 40/131 (31%) had PIOS applied
 - Post-dilation Only 23/40 (57.5%)
 - Stent Only 12/40 (30%)
 - Post-dilation & Stent 5/40 (12.5%)

- 29 paired cases available for analysis after Core Lab adjudication
- Larger increase in FFR observed with Stenting than Post-Dilation



Results – Primary Outcome

Results – Secondary Outcome

Target Vessel Failure

Median (IQR) Follow-Up Time: 1.7 (0.9) years

	PIOS (n=131)	Control (n=129)
Target Vessel Failure, n(%)	1 (0.8)	0
Cardiac Death	1 (0.8)	0
Target Vessel Myocardial Infarction	0	0
Target Vessel Revascularisation	0	0

Additional Procedural Details

	PIOS (n=40)	No PIOS (n=220)	P value
Procedure Duration (mins)	94±23	67±24	<.001
Contrast Dose (ml)	225±53	185±51	<.001
Fluoroscopy Time (mins)	23±8	16±8	<.001
Dose Area Product (cGy.cm²)	5236±2783	3780±2391	<.001
Radiation Dose (mGy)	921±551	686±462	.004
Adenosine Duration (sec)	439±87	290±73	<.001
Adenosine Dose (mg)	93±25	62±32	<.001

Procedural Complications

	PIOS (n=40)	No PIOS (n=220)	P value
Procedural Complications (%)	2.5	9.5	.14
Coronary Dissection (%)	0	0.9	.54
Side Branch Occlusion (%)	2.5	3.6	.72
No Flow / Slow Flow (%)	0	0.9	.54
Arm Haematoma >5cm (%)	0	4.5	.17
Type 4a MI (%)	0	2.7	.29

Symptoms - Change in SAQ-7 Scores

Median (IQR) Follow-Up Time: 105 (31) Days

	PIOS (n=114)		Control (n=115)		P value
	Value	Change	Value	Change	
Summary Score (SAQ7-SS)					
Baseline	63±25		63±25		.82
Follow-up	82±24	21±25	84±19	22±25	.68

88% of patients completed follow-up questionnaires

Physiology Stratified by Target Vessel

	LAD (n=150)	LCx (n=43)	RCA (n=67)	P value
Pre-PCI				
FFR	0.58±0.14	0.61±0.11	0.59±0.16	.52
CFR	2.1±1.0	1.8±0.8	1.8±0.6	.06
IMR	26±10	27±13	32±15	.02
IMRc	19±8	21±10	24±13	.004
Post-PCI				
FFR	0.80±0.07	0.92±0.07	0.91±0.07	<.001
CFR	3.2±1.8	3.3±1.4	3.4±2.1	.82
IMR	22±15	19±11	25±19	.19
IMRc	21±15	19±11	25±19	.14

Physiology Stratified by PCI Indication

	Stable Angina (n=88)	NSTEMI/UA* (n=104)	Staged Non-Culprit PCI (n=68)	P value
Pre-PCI				
FFR	0.57±0.14	0.55±0.15	0.67±0.10	<.001
CFR	1.8±0.9	1.8±0.9	2.3±0.9	.005
IMR	29±12	29±13	24±11	.02
IMRc	21±9	21±11	20±10	.99
Post-PCI				
FFR	0.83±0.08	0.86±0.10	0.85±0.09	.11
CFR	3.5±2.1	3.33±1.7	2.9±1.5	.15
IMR	19±11	23±17	24±19	.13
IMRc	19±11	22±17	23±19	.13

Summary

- In TARGET FFR, after angiographically-guided PCI...
 - **32%** of patients had FFR ≥0.90
 - **29%** of patients had FFR ≤0.80
- Based on FFR pullback assessment, a substrate for further optimization was present in 60/131 (46%) patients randomized to PIOS
- Operators considered it appropriate to perform additional post-dilatation
 +/- stenting in 40/60 (66%) patients
- Among these 40 cases....
 - Mean FFR increased from 0.76 to 0.82, P<.001
 - Mean CFR increased from 3.0 to 4.0, P=.02

Conclusions

- The majority of patients with angiographically acceptable PCI results have a physiologically suboptimal outcome (post-PCI FFR ≤0.90).
- In an intention-to-treat analysis, randomization of patients with an angiographically acceptable PCI result to an FFR-guided optimization strategy did not achieve a significant (20%) increase in the proportion of patients with final FFR ≥0.90 (38.1% vs. 28.1%, P=0.099)
- The PIOS intervention did significantly reduce in the proportion of patients with final FFR ≤0.80 (18.6% vs. 29.8%, P=0.045)
- In the subset of patients in whom further intervention was actually performed, final post-PCI FFR and CFR both increased significantly

Acknowledgements

- Patients and staff of the Golden Jubilee National Hospital, Glasgow
- Keith Oldroyd
- Colin Berry
- John McClure
- Carlos Collet & CoreAalst
- Samuel Copt
- Johan Svanerud
- Nils Johnson
- Matthaios Didangelos

- Muhammad Aetesam-ur-Rahman
- Peter McCartney
- Tom Ford
- Novalia Sidik
- David Carrick
- Heerajnarain Bulluck
- Robert McDade
- Ruth McLaren
- Mitchell Lindsay
- Aadil Shaukat

- Paul Rocchiccioli
- Stuart Watkins
- Margaret McEntegart
- Richard Good
- Keith Robertson
- Patrick O'Boyle
- Andrew Davie
- Adnan Khan
- Stuart Hood
- Hany Eteiba

