The DEFINE-FLOW study

combined CFR and FFR assessment

Dr. Nils Johnson on behalf of the DEFINE-FLOW investigators

Associate Professor of Medicine
Weatherhead Distinguished Chair of Heart Disease
Division of Cardiology, Department of Medicine
and the Weatherhead PET Imaging Center
McGovern Medical School at UTHealth (Houston)
Memorial Hermann Hospital – Texas Medical Center
United States of America

Disclosure Statement of Financial Interest

Within the past 12+ months, Nils Johnson has had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/research support (to <u>institution</u>)
- Licensing and associated consulting (to institution)
- Support for educational meetings/training (honoraria/fees donated to <u>institution</u>)
- PET software 510(k) from FDA
 (application by Lance Gould, to <u>institution</u>)
- Patents filed (USPTO serial numbers 62/597,134 and 62/907,174)

Organizations (alphabetical)

- St Jude Medical (for CONTRAST study)
- Volcano/Philips (for DEFINE-FLOW study)
- Boston Scientific
 (for smart-minimum FFR algorithm)
- Various, including academic and industry
- K113754 (cfrQuant, 2011)
- K143664 (HeartSee, 2014)
- K171303 (HeartSee update, 2017)
- SAVI and ΔP/Q methods
- Correction of fluid-filled catheter signal

How to treat CFR/FFR discordance?

57 year-old man with diabetes and CCS class I angina

Hypothesis

Vessels with

- •abnormal FFR≤0.8 but intact CFR≥2
- •will show *non-inferior* outcomes
- •versus FFR>0.8 and CFR≥2
- when treated medically.

Primary endpoint:

- •composite of all-cause death, MI, PCI/CABG
- assessed after 2 years
- central adjudication by events committee
- non-inferiority margin of 10%

Treatment protocol

measure FFR and CFR FFR>0.8 FFR≤0.8 defer PCI (CFR adds value?) CFR≥2 CFR<2 defer PCI! perform PCI (key difference)

Study flow diagram

455 subjects

669 lesions

1729 measurements

Excluded

25 subjects

136 lesions

478 measurements

Protocol-treated and followed

430 subjects

533 lesions

1251 measurements

FFR>0.8, CFR≥2.0

Medical therapy

207 subjects 236 lesions

FFR 0.88 (IQR 0.84-0.93)

CFR 2.5 (IQR 2.2-2.9)

FFR>0.8, CFR<2.0

Medical therapy

108 subjects

123 lesions

FFR 0.89 (IQR 0.85-0.93)

CFR 1.7 (IQR 1.5-1.9)

FFR≤0.8, CFR≥2.0

Medical therapy

74 subjects

74 lesions

FFR 0.75 (IQR 0.72-0.78)

CFR 2.6 (IQR 2.3-2.9)

FFR≤0.8, CFR<2.0

Revascularized by PCI

94 subjects

100 lesions

FFR 0.70 (IQR 0.60-0.75)

CFR 1.4 (IQR 1.2-1.7)

Baseline characteristics

	<u>N = 430 subjects</u>		<u>N = 533 lesions</u>
Age (years)	67 ± 10	LAD	59%
Male	74%	LCx	23%
Diabetes	27%	RCA	18%
Active tobacco	22%	Prior PCI of vessel	14%
Prior MI	27%	FFR≤0.80	33%
Prior PCI	40%	CFR<2.0	42%
Stable presentation	80%		
Aspirin	89%		
Statin	80%		
≥2 anti-anginals*	50%		

^{* =} includes beta blockers, calcium blockers, nitrates, ranolazine, ivabradine, trimetazidine, and nicorandil

CFR/FFR discordance

Primary endpoint

natural history <u>NOT non-inferior</u> for FFR+/CFR- and FFR-/CFR-

Secondary data: Target Vessel Failure

2-year TVF (MI or PCI/CABG of target) (from Kaplan-Meier estimates, using site-reported FFR and CFR)

- FFR-/CFR- = 3.0%
- FFR+/CFR- = 9.6%
- FFR-/CFR+ = 6.7%
- FFR+/CFR+ = 6.1% (after PCI)

Continuous predictors

- natural history (no FFR+/CFR+)
- 351 subjects, 433 lesions
- time-to-failure Cox mixed effects
- FFR hazard ratio <0.01, p=0.0067
- CFR hazard ratio 0.74, p=0.44

Secondary data: core lab

<u>Measurements</u>

- •69.8% of measurements accepted
- • Δ FFR = 0.008 \pm 0.026 (site<core lab)
- • Δ CFR = 0.02 \pm 0.23 (site>core lab)
 - → core lab reduces sample size by 30%
 - → but no change in FFR, CFR

TVF using continuous FFR, CFR

- natural history (no FFR+/CFR+)
- •286 subjects, 337 lesions
- time-to-failure Cox mixed effects
- •FFR hazard ratio <0.01, p=0.038
- •CFR hazard ratio 0.78, p=0.64
 - → core lab analysis supports site analysis

Limitations

- Lack of randomization excludes causality
 (no comparison arm for FFR+/CFR- quadrant)
- Modest sample size with slow enrollment (took 3 years to enroll 455 subjects from 12 centers)
- Modest event rate with few "hard" endpoints (only 2 deaths [both non-cardiac], 5 infarcts)
- Unblinded subjects and physicians
 (might have biased the 32 TVR/TLR)
- Few lesions with severe FFR/CFR (FFR<0.75 in 20%, CFR≤1.7 in 27%)
- Therefore, a hypothesis-generating study

Primary conclusion

Natural history of FFR≤0.8 / CFR≥2

is NOT non-inferior

to lesions with FFR>0.8 / CFR≥2