# The DEFINE-FLOW study 

## combined CFR and FFR assessment

## Dr. Nils Johnson on behalf of the DEFINE-FLOW investigators

Associate Professor of Medicine<br>Weatherhead Distinguished Chair of Heart Disease<br>Division of Cardiology, Department of Medicine and the Weatherhead PET Imaging Center<br>McGovern Medical School at UTHealth (Houston)<br>Memorial Hermann Hospital - Texas Medical Center<br>United States of America

## Disclosure Statement of Financial Interest

Within the past $12+$ months, Nils Johnson has had a financial interest/arrangement or affiliation with the organization(s) listed below.

## Affiliation/Financial Relationship

- Grant/research support
(to institution)
- Licensing and associated consulting (to institution)
- Support for educational meetings/training (honoraria/fees donated to institution)
- PET software 510(k) from FDA
(application by Lance Gould, to institution)

Organizations (alphabetical)

- St Jude Medical (for CONTRAST study)
- Volcano/Philips (for DEFINE-FLOW study)
- Boston Scientific
(for smart-minimum FFR algorithm)
- Various, including academic and industry
- K113754 (cfrQuant, 2011)
- K143664 (HeartSee, 2014)
- K171303 (HeartSee update, 2017)
- SAVI and $\Delta P / Q$ methods
- Correction of fluid-filled catheter signal


## How to treat CFR/FFR discordance?




57 year-old man with diabetes and CCS class I angina

## Hypothesis

Vessels with

- abnormal FFR $\leq 0.8$ but intact CFR $\geq 2$
-will show non-inferior outcomes
- versus FFR>0.8 and CFR $\geq 2$
-when treated medically.

Primary endpoint:
-composite of all-cause death, MI, PCI/CABG

- assessed after 2 years
-central adjudication by events committee
-non-inferiority margin of 10\%


## Treatment protocol

measure FFR and CFR

FFR>0.8
defer PCl
(CFR adds value?)


$C F R \geq 2$ defer PCI!<br>(key difference)

CFR<2
perform PCl

## Study flow diagram

Enrolled<br>455 subjects<br>669 lesions<br>1729 measurements



## Baseline characteristics

$\mathrm{N}=430$ subjects

| Age (years) | $67 \pm 10$ | LAD | $59 \%$ |
| :--- | :---: | :--- | :--- |
| Male | $74 \%$ | LCx | $23 \%$ |
| Diabetes | $27 \%$ | RCA | $18 \%$ |
| Active tobacco | $22 \%$ | Prior PCI of vessel | $14 \%$ |
| Prior MI | $27 \%$ | FFR $\leq 0.80$ | $33 \%$ |
| Prior PCI | $40 \%$ | CFR<2.0 | $42 \%$ |
| Stable presentation | $80 \%$ |  |  |
| Aspirin | $89 \%$ |  |  |
| Statin | $80 \%$ |  |  |
| $\geq 2$ anti-anginals* | $50 \%$ |  |  |

## CFR/FFR discordance



## Primary endpoint

 2-year MACE (death, MI, any PCI/CABG) (from Kaplan-Meier estimates, using site-reported FFR and CFR) -FFR-/CFR- = 5.8\%
-FFR+/CFR- = 10.8\%
-FFR-/CFR+ = 12.4\%

- FFR $+/ C F R+=14.4 \%($ after PCI$)$

FFR+/CFR- vs FFR-/CFR-
$-\Delta=+5.0 \%$ ( $95 \% \mathrm{Cl}-1.5 \%$ to $+11.5 \%$ )

- $p$-value 0.065 for non-inferiority
natural history NOT non-inferior for FFR+/CFR- and FFR-/CFR-


## Secondary data: Target Vessel Failure



2-year TVF (MI or PCI/CABG of target) (from Kaplan-Meier estimates, using site-reported FFR and CFR)

- FFR-/CFR- = 3.0\%
- FFR+/CFR- = 9.6\%
- FFR-/CFR+ = 6.7\%
- FFR+/CFR+ = 6.1\% (after PCI)


## Continuous predictors

- natural history (no FFR+/CFR+)
- 351 subjects, 433 lesions
- time-to-failure Cox mixed effects
- FFR hazard ratio <0.01, $p=0.0067$
- CFR hazard ratio $0.74, p=0.44$


## Secondary data: core lab

Measurements
-69.8\% of measurements accepted
$\bullet \triangle \mathrm{FFR}=0.008 \pm 0.026$ (site<core lab)
$\bullet \triangle \mathrm{CFR}=0.02 \pm 0.23$ (site>core lab)
$\rightarrow$ core lab reduces sample size by $30 \%$
$\rightarrow$ but no change in FFR, CFR

TVF using continuous FFR, CFR

- natural history (no FFR+/CFR+)
- 286 subjects, 337 lesions
-time-to-failure Cox mixed effects
- FFR hazard ratio <0.01, $p=0.038$
- CFR hazard ratio $0.78, p=0.64$
$\rightarrow$ core lab analysis supports site analysis


## Limitations

- Lack of randomization excludes causality
(no comparison arm for FFR+/CFR- quadrant)
- Modest sample size with slow enrollment
(took 3 years to enroll 455 subjects from 12 centers)
- Modest event rate with few "hard" endpoints (only 2 deaths [both non-cardiac], 5 infarcts)
- Unblinded subjects and physicians
(might have biased the 32 TVR/TLR)
- Few lesions with severe FFR/CFR
(FFR $<0.75$ in 20\%, CFR $\leq 1.7$ in 27\%)
- Therefore, a hypothesis-generating study


## Primary conclusion

Natural history of FFR $\leq 0.8$ / CFR $\geq 2$ is NOT non-inferior
to lesions with $\mathrm{FFR}>0.8 / \mathrm{CFR} \geq 2$

