Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease – The SCORED Trial

Deepak L. Bhatt, MD, MPH, Michael Szarek, PhD, Bertram Pitt, MD, Christopher P. Cannon, MD, Lawrence A. Leiter, MD, Darren K. McGuire, MD, MPHSc, Julia B. Lewis, MD, Matthew C. Riddle, MD, Silvio E. Inzucchi, MD, Mikhail N. Kosiborod, MD, David Z. I. Cherney, MD, PhD, Jamie P. Dwyer, MD, Benjamin M. Scirica, MD, MPH, Clifford J. Bailey, PhD, Rafael Díaz, MD, Kausik K. Ray, MD, Jacob A. Udell, MD, MPH, Renato D. Lopes, MD, PhD, Ph. Gabriel Steg, MD, on Behalf of the SCORED Investigators
Disclosures

Dr. Bhatt discloses the following relationships - Advisory Board: Bayer, Boehringer Ingelheim, Cardax, CellProthera, Cereno Scientific, Elsevier Practice Update Cardiology, Janssen, Level Ex, Medscape Cardiology, Merck, MyoKardia, NirvaMed, Novo Nordisk, PhaseBio, PLx Pharma, Regado Biosciences, Stasys; Board of Directors: Boston VA Research Institute, DRS.LINQ (stock options), Society of Cardiovascular Patient Care, ToBeSoft; Chair: Inaugural Chair, American Heart Association Quality Oversight Committee; Data Monitoring Committees: Acesoion Pharma, Assistance Publique-Hôpitaux de Paris, Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Boston Scientific (Chair, PEITHO trial), Cleveland Clinic (including for the ExCEED trial, funded by Edwards), Contego Medical (Chair, PERFORMANCE 2), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo; for the ABILITY-DM trial, funded by Concept Medical), Novartis, Population Health Research Institute; Rutgers University (for the NIH-funded MINT Trial); Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Chair, ACC Accreditation Oversight Committee), Arnold and Porter law firm (work related to Sanofi/Bristol-Myers Squibb clopidogrel litigation), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute; REDUAL PCI clinical trial steering committee funded by Boehringer Ingelheim; AEGIS-II executive committee funded by CSL Behring), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Canadian Medical and Surgical Knowledge Translation Research Group (clinical trial steering committees), Cowen and Company, Duke Clinical Research Institute (clinical trial steering committees, including for the PRONOUNCE trial, funded by Ferring Pharmaceuticals), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), K2P (Co-Chair, interdisciplinary curriculum), Level Ex, Medtelligence/ReachMD (CME steering committees), MJH Life Sciences, Piper Sandler, Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today's Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), MJH Life Sciences, NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research Funding: Abbott, Afimmune, Aker Biomarine, Amarigen, Amgen, AstraZeneca, Bayer, Beren, Boehringer Ingelheim, Bristol-Myers Squibb, Cardax, CellProthera, Cereno Scientific, Chiesi, CSL Behring, Eisai, Ethicon, Faraday Pharmaceuticals, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Garmin, HLS Therapeutics, Idorsia, Ironwood, Ischemix, Janssen, Javelin, Lexicon, Lilly, Medtronic, Merck, Moderna, MyoKardia, NirvaMed, Novartis, Novo Nordisk, Owkin, Pfizer, PhaseBio, PLx Pharma, Recardio, Regeneron, Reid Hoffman Foundation, Roche, Sanofi, Stasys, Synaptic, The Medicines Company, 89Bio; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald’s Heart Disease); Site Co-Investigator: Abbott, Biotronik, Boston Scientific, CSI, St. Jude Medical (now Abbott), Philips, Svelte; Trustee: American College of Cardiology; Unfunded Research: FlowCo, Takeda.

SCORED was initially sponsored by Sanofi and then by Lexicon.

This presentation includes off-label and investigational uses of drugs.
The Evolution of SGLT2i in Heart Failure Management

Diabetes

- Pre-clinical (subclinical) stage of the disease
- Clinical stage of the disease
- Detectable cardiac involvement

Diabetes and No Diabetes

- Window of opportunity for treatment

Normal Ventricular Function

- 0 years
- 10 years
- 18-20 years

Advanced Heart Failure

- CANVAS Program
- CREDENCE
- DAPA-CKD
- DECLARE-TIMI 58
- EMPA-REG OUTCOME
- VERTIS CV
- SCORED

- DAPA-HF
- DELIVER HFpEF
- EMPEROR-Preserved
- EMPEROR-Reduced
- SOLOIST-WHF

Diabetes

Na⁺-retention
Hypervolemia
RAAS Activation
Neurohumoral Activation
Inflammation
Ischemia
Altered Energetics

SGLT2 Inhibitors

Sotagliflozin: Dual SGLT1 and SGLT2 Inhibitor

- **SGLT1** is the primary transporter for absorption of glucose and galactose in the GI tract
- Pharmacologic inhibition by sotagliflozin is independent of insulin and does not depend on kidney function
- Potential reduction in atherosclerotic risks

- **SGLT2** is expressed in the kidney, where it reabsorbs 90% of filtered glucose
- Pharmacologic inhibition by sotagliflozin is independent of insulin but requires kidney function

Primary Efficacy: Total CV Death, HHF, and Urgent HF Visit

![Graph showing event rates over time for placebo and Sotagliflozin.](image)

- **Primary Efficacy**:
 - Total CV Death
 - HHF
 - Urgent HF Visit

Graph Details:
- **Placebo** event rate: 98 events
- **Sotagliflozin** event rate: 70 events

Statistical Analysis:
- **HR 0.67 (95% CI 0.52-0.85), P=0.0009**
- **ARR: 25 Events Per 100 Patient-Years**
- **Months Since Randomization**
- **Treatment Patient-Years to Avoid 1 Event: 4**

References:
Primary Efficacy Subgroups

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Patients</th>
<th>Sotagliflozin</th>
<th>Placebo</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1222</td>
<td>51.0</td>
<td>76.3</td>
<td>0.67 (0.52, 0.85)</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 50</td>
<td>966</td>
<td>56.9</td>
<td>79.9</td>
<td>0.72 (0.56, 0.94)</td>
</tr>
<tr>
<td>≥ 50</td>
<td>256</td>
<td>30.6</td>
<td>64.0</td>
<td>0.48 (0.27, 0.86)</td>
</tr>
<tr>
<td>Geographic Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Americas</td>
<td>346</td>
<td>68.3</td>
<td>103.0</td>
<td>0.64 (0.43, 0.95)</td>
</tr>
<tr>
<td>Europe</td>
<td>800</td>
<td>44.1</td>
<td>64.7</td>
<td>0.69 (0.50, 0.95)</td>
</tr>
<tr>
<td>Rest of World</td>
<td>76</td>
<td>48.4</td>
<td>78.3</td>
<td>0.60 (0.23, 1.58)</td>
</tr>
<tr>
<td>First Study Drug Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before Discharge</td>
<td>596</td>
<td>52.1</td>
<td>76.6</td>
<td>0.71 (0.51, 0.99)</td>
</tr>
<tr>
<td>After Discharge</td>
<td>626</td>
<td>50.0</td>
<td>76.1</td>
<td>0.64 (0.45, 0.90)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>412</td>
<td>41.9</td>
<td>52.0</td>
<td>0.80 (0.51, 1.25)</td>
</tr>
<tr>
<td>Male</td>
<td>810</td>
<td>55.7</td>
<td>89.3</td>
<td>0.62 (0.47, 0.82)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 65</td>
<td>364</td>
<td>57.1</td>
<td>71.1</td>
<td>0.79 (0.51, 1.23)</td>
</tr>
<tr>
<td>≥ 65</td>
<td>858</td>
<td>48.0</td>
<td>78.5</td>
<td>0.62 (0.47, 0.82)</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 60</td>
<td>854</td>
<td>50.1</td>
<td>85.8</td>
<td>0.59 (0.44, 0.79)</td>
</tr>
<tr>
<td>≥ 60</td>
<td>368</td>
<td>53.1</td>
<td>58.1</td>
<td>0.90 (0.58, 1.37)</td>
</tr>
</tbody>
</table>
SCORED Trial Design

Key inclusion criteria:
- Type 2 diabetes with HbA1c ≥ 7%
- eGFR 25-60 mL/min/1.73m²
 - with no requirement for macro- or micro-albuminuria
- CV risk factors

Key exclusion criteria:
- Planned start of SGLT2 inhibitor

10,584 patients with DM + CKD

Double-blind randomization

Placebo QD

Sotagliflozin 200 mg QD

Primary Endpoint: Total Events
- Cardiovascular Death
- Hospitalization for Heart Failure
- Urgent Heart Failure Visit

Median follow up duration (IQR) = 16.0 (12.0-20.3) months

1Goal of dose increase to 400 mg QD
Primary Efficacy: Total CV Death, HHF, and Urgent HF Visit

HR 0.74 (95% CI 0.63-0.88), P=0.0004
ARR: 1.9 Events Per 100 Patient-Years
Treatment Patient-Years to Avoid 1 Event: 54

Total CV Death, Non-Fatal MI, or Non-Fatal Stroke

Early Effect
Significant by 94 days:
HR=0.69, P=0.045

Total CV Death, Non-Fatal MI, or Non-Fatal Stroke

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fatal or nonfatal MI*</td>
<td>0.68 (0.52-0.89)</td>
<td>0.004</td>
</tr>
<tr>
<td>Total fatal or nonfatal stroke*</td>
<td>0.66 (0.48-0.91)</td>
<td>0.012</td>
</tr>
</tbody>
</table>

* Post hoc endpoint

History of Cardiovascular Disease (CVD) Subgroup Analyses

Subgroups

1. History of cardiovascular disease at baseline (N=5144 patients)
2. No history of cardiovascular disease at baseline (N=5440 patients)

The prespecified definition of history of CVD included prior myocardial infarction, prior stroke, coronary revascularization, and peripheral vascular disease; (multiple post hoc sensitivity analyses yielded similar results)

Endpoints

1. Total MACE (first and recurrent events)
2. Total MI (fatal and non-fatal MI)
3. Total stroke (fatal and non-fatal stroke)
Total CV Death, Non-Fatal MI, or Non-Fatal Stroke by CVD Subgroup

History of CVD: HR 0.79 (95% CI 0.64-0.96), P=0.020
Total CV Death, Non-Fatal MI, or Non-Fatal Stroke by CVD Subgroup

Placebo

Sotagliflozin

No History of CVD: HR 0.74 (95% CI 0.56-0.99), P=0.046

History of CVD: HR 0.79 (95% CI 0.64-0.96), P=0.020

P_interaction = 0.76

Total MI by CVD Subgroup

History of CVD: HR 0.69 (95% CI 0.51-0.95), P=0.023

History of CVD: HR 0.69 (95% CI 0.51-0.95), P=0.023

No History of CVD: HR 0.66 (95% CI 0.41-1.06), P=0.088

Total MI by CVD Subgroup

Total Stroke by CVD Subgroup

History of CVD: HR 0.69 (95% CI 0.46-1.02), P=0.063
Events Per 100 Patients

History of CVD: HR 0.69 (95% CI 0.46-1.02), P=0.063
No History of CVD: HR 0.62 (95% CI 0.36-1.06), P=0.080

Total Stroke by CVD Subgroup

Consistent Benefit on MACE Across Vascular Beds

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>N</th>
<th>Sotagliflozin</th>
<th>Placebo</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary Artery Disease</td>
<td>4943</td>
<td>6.13</td>
<td>7.77</td>
<td>0.79 (0.65, 0.97)</td>
<td>0.022</td>
</tr>
<tr>
<td>Cerebrovascular Disease</td>
<td>1777</td>
<td>7.03</td>
<td>9.54</td>
<td>0.72 (0.53, 0.99)</td>
<td>0.042</td>
</tr>
<tr>
<td>Peripheral Artery Disease</td>
<td>1393</td>
<td>6.76</td>
<td>9.50</td>
<td>0.77 (0.54, 1.09)</td>
<td>0.140</td>
</tr>
</tbody>
</table>

\[P_{interaction} = NS \text{ for all comparisons} \]

<table>
<thead>
<tr>
<th>Composite Term</th>
<th>Sotagliflozin N=5291 n (%)</th>
<th>Placebo N=5286 n (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary tract infections</td>
<td>610 (11.5)</td>
<td>585 (11.1)</td>
<td>0.45</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>448 (8.5)</td>
<td>315 (6.0)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Volume depletion</td>
<td>278 (5.3)</td>
<td>213 (4.0)</td>
<td>0.003*</td>
</tr>
<tr>
<td>Bone fractures</td>
<td>111 (2.1)</td>
<td>117 (2.2)</td>
<td>0.68</td>
</tr>
<tr>
<td>Genital mycotic infections</td>
<td>125 (2.4)</td>
<td>45 (0.9)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Severe hypoglycemia</td>
<td>53 (1.0)</td>
<td>55 (1.0)</td>
<td>0.84</td>
</tr>
<tr>
<td>Malignancies</td>
<td>47 (0.9)</td>
<td>42 (0.8)</td>
<td>0.60</td>
</tr>
<tr>
<td>Venous thrombotic events</td>
<td>31 (0.6)</td>
<td>37 (0.7)</td>
<td>0.46</td>
</tr>
<tr>
<td>Adverse event leading to amputation</td>
<td>32 (0.6)</td>
<td>33 (0.6)</td>
<td>0.89</td>
</tr>
<tr>
<td>Diabetic ketoacidosis</td>
<td>30 (0.6)</td>
<td>14 (0.3)</td>
<td>0.022*</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>12 (0.2)</td>
<td>20 (0.4)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

*Proportions considered serious were similar between groups, and adverse events generally did not lead to treatment discontinuation

Meta-analysis of MACE Across Sotagliflozin Trials (N>20,000)

<table>
<thead>
<tr>
<th>Study Cohort</th>
<th>Sotagliflozin</th>
<th>Placebo</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORED (N = 10,584)</td>
<td>N = 5,292</td>
<td>N = 5,292</td>
<td>0.77 (0.65, 0.91)</td>
</tr>
<tr>
<td>Total events (rate/100 PY)*</td>
<td>343 (4.8)</td>
<td>442 (6.3)</td>
<td></td>
</tr>
<tr>
<td>SOLOIST (N = 1,222)</td>
<td>N = 608</td>
<td>N = 614</td>
<td>0.99 (0.72, 1.37)</td>
</tr>
<tr>
<td>Total events (rate/100 PY)*</td>
<td>83 (17.4)</td>
<td>80 (17.2)</td>
<td></td>
</tr>
<tr>
<td>Core Phase 3 T2DM (N = 5,100)</td>
<td>N = 2,904</td>
<td>N = 2,196</td>
<td>0.63 (0.42, 0.94)</td>
</tr>
<tr>
<td>Total events (rate/100 PY)**</td>
<td>55 (1.6)</td>
<td>50 (2.1)</td>
<td></td>
</tr>
<tr>
<td>Core Phase 3 T1DM, Phase 2 T2DM (N = 3,386)</td>
<td>N = 1,998</td>
<td>N = 1,388</td>
<td>0.68 (0.25, 1.82)</td>
</tr>
<tr>
<td>Total events (rate/100 PY)**</td>
<td>9 (0.69)</td>
<td>8 (0.87)</td>
<td></td>
</tr>
<tr>
<td>Meta-analysis results (N=20,292)</td>
<td></td>
<td></td>
<td>0.79 (0.68, 0.90)</td>
</tr>
</tbody>
</table>

*Investigator-reported events; **Adjudicated events

Limitations

Trial was stopped early
 • Shortened duration limited the statistical power to see significant reductions in CV death
 • Limited the magnitude of absolute risk reductions in MACE

Investigator-reported events were used instead of adjudication
 • Double-blind trial, with no reason to expect bias
 • Results were generally concordant
Conclusions

In patients with diabetes and chronic kidney disease, **sotagliflozin** significantly reduced the composite of total CV deaths, hospitalizations for HF, and urgent HF visits by **26%**

- With a very early benefit that was **significant by ~3 months**

Total CV deaths, MIs, and strokes were reduced by **23%**, potentially due to the SGLT1 effect of **sotagliflozin** on MI and also stroke; this effect was significant by ~ 3 months

MACE benefits were consistent across subgroups, including:

- Prior coronary, cerebral, or peripheral artery disease
- And even without established cardiovascular disease

Thank You!

Deepak L. Bhatt, MD, MPH
Executive Director,
Interventional Cardiovascular Programs,
BWH Heart & Vascular Center;
Professor of Medicine,
Harvard Medical School
Email: DLBhattMD@post.Harvard.edu
Twitter: @DLBhattMD