

NACMI: Trends in Clinical Characteristics, **Management Strategies** and Outcomes of STEMI Patients with COVID-19

TRANSFORMING CARDIOVASCULAR CARE FOR YOU. FOR YOUR TEAM.

Santiago Garcia, MD

The Christ Hospital, Cincinnati, OH On Behalf of NACMI Investigators

COVID-19 and STEMI Care:

Direct and Indirect Effects The Direct Effects History of Cardiovascular Disease and Risk Factors **Public Health Restrictions Associated With Mortality** Stay-At-Home Black or Hispanic

20-30% with no culprit lesion

Increase in cardiogenic shock

Increased mortality

Troponin Elevation Associated With

Mechanical Ventilation and Mortality

Cardiovascular Complications of COVID-19 **Prothrombotic & Proinflammatory**

Cardiovascular Effects of **COVID-19 Pandemic**

The Indirect Effects

Cardiovascular Procedures

· Delay to reperfusion

Out-of-Hospital

Cardiac Arrest

· Reduction in diagnostic procedures · Decrease in cardiovascular hospitalizations

Late Mechanical Complications

Free Wall Rupture

Left Ventricular Thrombosis

Papillary Muscle Dysfunction

Vaccine Related **Myocarditis and Pericarditis**

Psychological and Economic Impact

Deep Vein

Direct Effects of COVID: STEMI in Patients with COVID-19 Infection

- The risk of myocardial infarction (MI) doubles within 1-2 weeks of receiving a COVID-19 diagnosis
- High-risk subset with distinct clinical features
- Calls to deviate from the standard of care (PPCI) during the pandemic

Garcia, S. et al. J Am Coll Cardiol. 2021;77(16):1994-2003

Background

- Despite increased number of COVID-19 cases worldwide, significant progress has been made in both disease prevention and management during the course of the pandemic, which has contributed to a marked reduction in mortality in selected countries
- Goal: To describe trends in the baseline characteristics, management strategies and outcomes of COVID-19 patients with STEMI during the course of the pandemic

²⁻ J Hosp Med 2021;16:90-92.

Methods

- NACMI is a prospective, investigator-initiated, multi-center, observational registry of hospitalized STEMI patients with confirmed or suspected COVID-19 infection in North America
- Broad enrollment criteria without exclusions

Methods Inclusion Criteria

- COVID +: Adult patients (≥18 years) with 1) ST-segment elevation in at least 2 contiguous leads (or new-onset left bundle branch block), 2) a clinical correlate of myocardial ischemia (e.g., chest pain, dyspnea, cardiac arrest, shock, mechanical ventilation) and 3) confirmed COVID + by any commercially available test during, or 4 weeks before, the index STEMI hospitalization.
- PUIs: Adult patients with STEMI who were suspected positive on presentation but subsequently <u>tested negative for COVID-19</u> <u>infection</u> (person under investigation or PUI). The definition of PUI was left to the discretion of local hospitals but in general included a combination of possible COVID signs and symptoms (fever or respiratory symptoms such as cough, shortness of breath, sore throat), or exposure to a confirmed case or cluster of suspected COVID-19 cases.

Methods

Outcomes

- Primary: In-hospital mortality
- Secondary: stroke, composite of death, stroke or reinfarction

Comparison

- COVID+ patients were divided into two groups according to the year of the STEMI presentation during the pandemic, i.e. Y2020 group (3/1/2020 12/31/2020) and Y2021 group (1/1/2021 12/31/2021)
- These periods coincided with the commercial introduction of vaccines against COVID-19 in North America.

Statistics

- Demographic, clinical, and outcome variables were compared between the groups using Pearson's chi-squared or Fisher's exact test for categorical data and Student's t-test or Wilcoxon rank-sum test for continuous variables, as appropriate.
- The relative risk of death for Y2021 vs Y2020 group is estimated from a multivariate robust Poisson regression analysis with a canonical log-link and robust sandwich estimator of variance to allow for overdispersion in the data.
- Model covariates include age, BMI, gender, race, diabetes, abnormal chest X-ray findings, and shock pre-PCI.
- Age originally collected as a five-category variable is dichotomized as < 66 or ≥ 66 years;
 and BMI categories are defined overweight/obese or not per CDC definition.
- A proxy comorbidity index is defined to capture the pre-existing cardiovascular diseases/conditions as follows: a sum of indicators of hypertension and history of PCI, MI, CABG, stroke, or CHF for each patient is dichotomized to index those with three or more pre-existing conditions

Vaccines: 74% overall, 54% of Y2021 patients with vaccine information

- NACMI was designed in early 2020 prior to the commercialization of vaccines against COVID-19
- Vaccine status was not routinely captured in the registry
- However, once vaccines became commercially available in North America in 2021 the original protocol was amended to include immunization status including timing and type
- The protocol amendment was approved by 20 enrolling sites at the time of this publication

Results

	Y2020	Y2021			
Baseline Characteristics	n = 227	n = 359	p-value		
Age > 55 years	175 (77)	261 (73)	0.3		
Male	163 (72)	268 (75)	0.4		
History of CAD	51 (24)	88 (28)	0.3		
Non-Caucasian	137 (61)	142 (42)	<0.001		
Dyslipidemia	98 (45)	145 (46)	0.9		
Diabetes Mellitus	102 (46)	135 (42)	0.4		
BMI (Kg/m²) - mean ± SD	29 ± 8	27 ± 10	0.5		
Hypertension	165 (74)	223 (65)	0.025		
History of Heart Failure	33 (16)	51 (16)	0.9		
Symptoms at Presentation					
Dyspnea	126 (56)	152 (42)	0.002		
Chest pain	115 (51)	212 (59)	0.046		
Syncope	6 (2.6)	16 (4.5)	0.3		
Infiltrates on Chest X-ray	106 (47)	120 (33)	0.001		
Cardiac arrest pre-PCI	23 (11)	24 (7.9)	0.2		
Shock pre-PCI	37 (18)	38 (13)	0.079		
Ejection Fraction	43 (35, 55)	45 (34, 55)	0.5		
In-House presentation of MI	13 (5.7)	26 (7.4)	0.4		

Utilization of Invasive Angiography and Coronary Revascularization

	Y2020	Y2021			
Variable	n = 227	n = 359	p-value ¹		
No angiogram	52 (23)	49 (14)	0.004		
Patients undergoing invasive angiography, n = 485					
Reperfusion strategy	n = 175	n =310	0.7		
CABG	3 (1.7)	5 (1.6)			
Facilitated/Rescue PCI	7 (4.0)	11 (3.5)			
Medical therapy	34 (19)	78 (25)			
Primary PCI	125 (71)	206 (66)			
Thrombolytics	6 (3.4)	10 (3.2)			

Results *In-Hospital Outcomes*

Results (Cont'd)

- Risk of in-hospital mortality 25% lower (95% CI: -47-5, p=0.01) in Y2021 relative to Y2020
- Risk 1.7 (95% CI:1.2, 2.4, p=0.002) times higher if infiltrates were observed on X-Ray and nearly three times higher (95% CI:1.9-3.9, p<0.001) if cardiogenic shock was present
- Risk also higher for patients ≥66 years of age

Vaccine Effect (Y2021)

	Unvaccinated,	Vaccinated,	p-value ¹		
	n = 171	n = 22			
Age < 66y	104 (61)	12 (55)	0.572		
Overweight / Obese	128 (78)	16 (89)	0.372		
CVRF <3	137 (80)	19 (86)	0.579		
Dyspnea	79 (46)	6 (27)	0.092		
Chest Pain	107 (63)	15 (68)	0.608		
Syncope	6(3.5)	1 (4.5)	0.577		
Infiltrates on Chest X-Ray	64 (37)	4 (18)	0.075		
Cardiac arrest pre-PCI	8 (5.4)	1 (5.0)	1.0		
Shock pre-PCI	20 (14)	2 (10)	1.0		
Ejection Fraction	45 (34, 55)	45 (44, 54)	0.404		
In-House presentation of MI	19 (11)	0	0.137		
Clinical Outcomes					
Mortality	37 (22)	0 (0)	0.009		
Stroke	1 (0.6)	0 (0)	1.0		
Reinfarction	3 (1.8)	1. (4.5)	0.386		
Composite end-point	38 (22)	1 (4.5)	0.052		

Trends In STEMI Patients With Infection

20**21** 2020 61% 42% Non-Caucasian 56% 42% Symptom/Dyspnea 47% 33% Infiltrates On Chest X-Ray 18% 13% Cardiogenic Shock 0% 11% Covi<mark>d-19</mark> Vaccination 33% 23% In-Hospital Mortality

Simultaneous Publication in JACC

Acknowledgements

- NACMI received financial support from ACC, Saskatchewan Health Research Foundation (SHRF), Medtronic and Abbott Vascular
- Minneapolis Heart Institute Foundation (MHIF) data coordinating site
- 64 enrolling sites without compensation and in the midst of a pandemic that significantly affected biomedical research

Conclusions

- In-hospital mortality decreased 25% in Y2021
- Possible mediators: lower risk profile of patients, more typical ischemic symptoms, less cardiogenic shock and pulmonary involvement
- Vaccinated patients less likely to develop respiratory complications, none of them expired
- In contrast, mortality remains high (22%) for unvaccinated patients
- Despite logistical challenges, PCI remains dominant revascularization modality, 2/3 D2B time ≤ 90 minutes
- In summary, the clinical profile, management and outcomes of STEMI patients with COVID-19 infection is evolving towards that of STEMI patients prior to the pandemic although mortality remains high for unvaccinated patients

