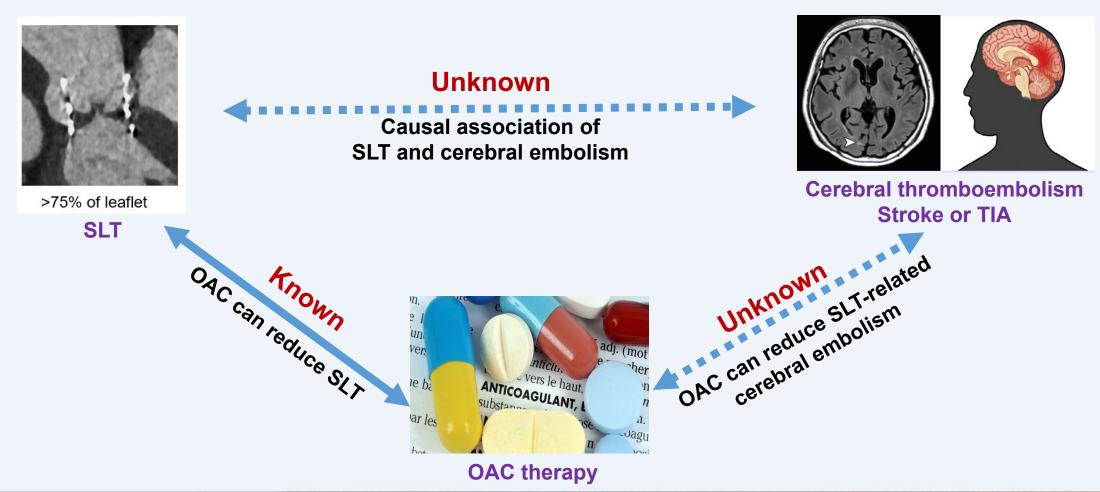


Edoxaban versus Dual Antiplatelet Therapy for
Leaflet Thrombosis and Cerebral
Thromboembolism after TAVR:
The ADAPT-TAVR Randomized Clinical Trial

Duk-Woo Park, MD, PhD

TRANSFORMING
CARDIOVASCULAR
CARE FOR YOU. FOR YOUR TEAM.
CARE FOR YOUR PATIENTS.


For the ADAPT-TAVR Investigators,
Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
Twitter (@dukwoo park)

Disclosure

- The ADAPT-TAVR trial was an investigator-initiated trial and was funded by the CardioVascular Research Foundation (Seoul, Korea) and Daiichi Sankyo Korea Co., Ltd.
- The funders assisted in the design of the protocol but had no role in the conduct of the trial or in the analysis, interpretation, or reporting of the results.

Subclinical Leaflet Thrombosis (SLT) after TAVR¹⁻⁴

What is Known? and What is Unknown?

Background

- The incidence of subclinical leaflet thrombosis by 4D-CT was not uncommon (approximately 10%~30%) and this phenomenon could be associated with increased risks of cerebral thromboembolism, stroke or TIA.¹⁻⁴
- However, the causal relationship of leaflet thrombosis with cerebral thromboembolism and neurological/neurocognitive dysfunction in patients undergoing TAVR is still unclear.
- Several RCTs have tested that NOAC-based strategy is more effective than conventional antithrombotic strategies for the prevention of leaflet thrombosis and thromboembolic risk in patients with or without OAC indication after TAVR.⁵⁻⁸

4D-CT, four-dimensional computed tomography; NOAC, non-vitamin K direct anticoagulant; OAC, oral anticoagulation; RCTs, randomized controlled trials; TAVR, transcatheter aortic valve replacement; TIA, transient ischemic attack.

¹Chakravarty T, et al. *Lancet* 2017;389:2383-2392. ²Rashid HN, et al. *EuroIntervention* 2018;13:e1748-e1755. ³Makkar RR, et al. *JACC* 2020;75:3003-3015. ⁴Bogyi M, et al. *JACC: Cardiovascular Interventions* 2021;14:2643-2656. ⁵Dangas GD et al. *NEJM* 2020;382:120-129. ⁶Collet JP. et al. *ATLANTIS trial*. *ACC* 2021. ⁷De Backer O et al. *NEJM* 2020;382:130-139. ⁸Van Mieghem NM et al. *NEJM* 2021; 385:2150-2160.

Study Objectives

- Primary objective → to investigate the effect of edoxaban compared to DAPT for the prevention of leaflet thrombosis and the accompanying potential risks of cerebral thromboembolization and neurological or neurocognitive dysfunction in patients without an OAC indication after TAVR.
- Secondary objective → to determine the causal relationship of subclinical leaflet thrombosis with cerebral thromboembolism and neurological/neurocognitive dysfunction.

DAPT, dual antiplatelet therapy; OAC, oral anticoagulation; TAVR, transcatheter aortic valve replacement

Study Design

ADAPT-TAVR Trial:

<u>Anticoagulant versus <u>D</u>ual <u>Antiplatelet Therapy for <u>P</u>reventing Leaflet <u>Thrombosis</u>
After <u>Transcatheter <u>Aortic</u> <u>Valve</u> <u>Replacement</u></u></u></u>

220 patients without no indication of OAC after successful TAVR Stratified randomization by (1) device type and (2) participating site **NOAC:** DAPT: Edoxaban 60 mg or 30 mg once daily* **ASA + Clopidogrel** (N=110)(N=110)**Mandatory evaluations:** - 4D, Cardiac CT at 6-Mo after TAVR Serial brain MRI and neurological/neurocognitive function tests at baseline and 6-Mo

*30 mg once daily if moderate or severe renal impairment (creatinine clearance 15 – 50 mL/min), low body weight ≤60kg, or concomitant use of P-glycoprotein inhibitors (cyclosporin, dronedarone, erythromycin, ketoconazole).

Inclusion and Exclusion Criteria

INCLUSION

- 1. Man or woman (≥ 18 years) with symptomatic AS
- 2. Have a **successful TAVR** of an aortic valve stenosis (either native of valve-in-valve), defined as:
 - Correct positioning of a single prosthetic heart valve into the proper anatomical location.¹
 - Intended performance of the prosthetic heart valve - presence of all 3 conditions post-TAVR:
 - Mean aortic valve gradient < 20 mmHg
 - Peak transvalvular velocity (aortic valve maximum velocity) < 3.0 m/s
 - No severe or moderate aortic valve regurgitation
 - Without unresolved periprocedural complications
- 3. With any approved/marketed TAVR device

KEY EXCLUSION

- 1. Any established indication for anticoagulation (e.g., atrial fibrillation)
- 2. Any absolute indication for DAPT (e.g., ACS or recent PCI)
- 3. Severe renal insufficiency prohibiting CT imaging (eGFR<30)
- 4. Contraindication to aspirin, clopidogrel or edoxaban
- 5. Known bleeding diathesis
- 6. Clinically overt stroke within 3 months
- 7. Moderate and severe hepatic impairment or any hepatic disease associated with coagulopathy
- 8. Active malignancy

¹Kappetein AP, et al. *J Am Coll Cardiol*. 2012;60:1438-1454.

Study Endpoints

Primary endpoint

Incidence of leaflet thrombosis on 4D, volume-rendered CT at 6 months

Secondary endpoints

- Presence and number/volume of new cerebral lesions on brain MRI
- Serial change of neurological/neurocognitive assessment (NIHSS, mRS, and MoCA)
- Clinical safety and efficacy outcomes
- Serial echocardiographic parameters

NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; MoCA, Montreal Cognitive Assessment

Enrollment: 5 centers, 3 countries

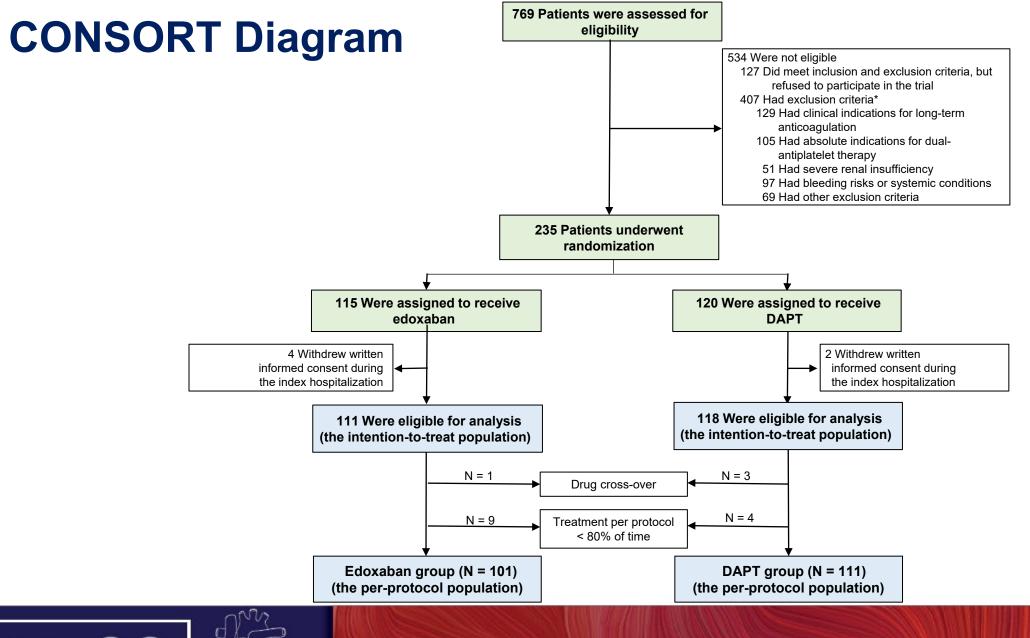
Executive Committee: DW Park (Trial PI), SJ Park, SCC Lam, WH Yin, HL Kao. WJ Kim

<u>Data Monitoring Committee:</u> MS Lee (Chairperson), BK Koo, YG Ko, YH Jeong, JH Kim

Clinical Events Committee: CH Lee (Chairperson), JH Lee, JH Kim

<u>Imaging (CT and MRI) Core Lab</u>: Asan Image Metrics (Imaging Corelab), KW Kim (Chairperson), DH Yang (CT corelab), SC Jung (MRI corelab)

Neurocognitive function and echo Core Lab: JH Lee (Chair, Neurology Corelab), SA Lee (Chair, Echo. Corelab)


Sample Size & Statistical Analysis

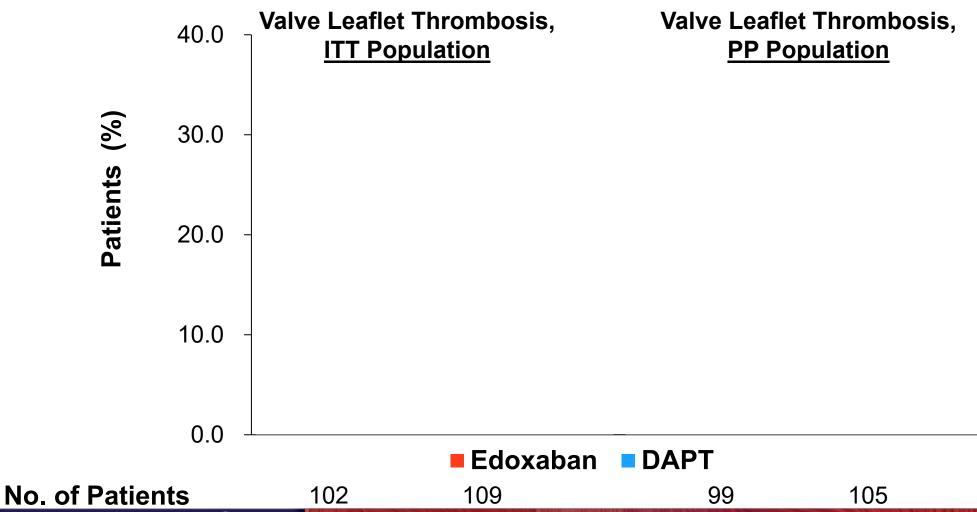
- Under an assumption that an incidence of leaflet thrombosis of 15% in the DAPT group and 3% in the NOAC (edoxaban) group based on prior data,¹ a total sample of 220 patients was deemed to be sufficient to evaluate the primary endpoint with a statistical power of 80%, a 2-sided significance level of 0.05 and attrition rate of 10% (CT follow-up loss).
- The final sample size was also met to demonstrate that the edoxaban group would provide a 30% reduction of the number of new cerebral lesions on MRI compared to the DAPT group based on prior available data²⁻³
- The main analyses were performed according to the ITT principle and secondary analyses were also performed in the PP population

ITT, intention-to-treat; PP, per-protocol.

¹Chakravarty T, et al. *Lancet* 2017;389:2383-2392. ²Haussig S, et al. *JAMA* 2016;316:592-601. ³Kapadia SR, et al. *JACC* 2017;69:367-377.

Baseline Characteristics, ITT Population

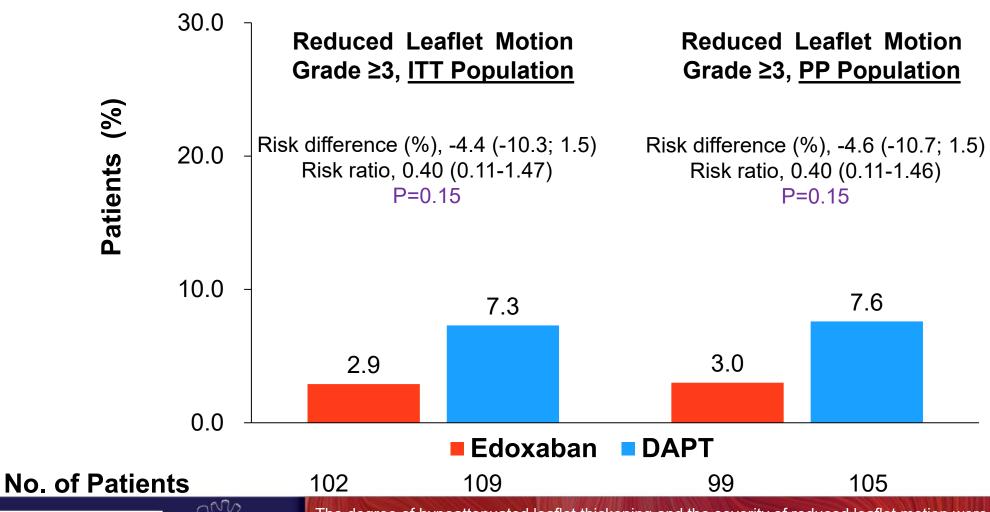
	Edoxaban group (N=111)	DAPT		Edoxaban group (N=111)	DAPT group (N=118)
Clinical characteristics	group (N-111)	group (14-110)	Procedural characteristics	group (IIII)	group (N-110)
Age, years	80.2±5.2	80.0±5.3	Pre-TAVR balloon angioplasty	40 (36.0%)	41 (34.8%)
Male sex	49 (44.1%)	47 (39.8%)	Valve type	,	,
Body weight ≤60kg	55 (49.6%)	63 (53.4%)	Balloon-expandable	101 (91.0%)	105 (89.0%)
STS risk score	3.1±2.1	3.5±2.7	Self-expandable	10 (9.0%)	13 (11.0%)
EuroSCORE II value	2.3±3.5	2.4±2.1	Valve-in-valve	0 (0.0)	4 (3.4%)
NYHA class III or IV	30 (27.0%)	31 (26.3%)	Transfemoral approach	110 (99.1%)	117 (99.2%)
Diabetes mellitus	35 (31.5%)	36 (30.5%)	MAC anesthesia	84 (75.7%)	92 (78.0%)
Coronary artery disease	32 (28.8%)	34 (28.8%)	New permanent pacemaker	13 (11.7%)	13 (11.0%)
Prior PCI	18 (16.2%)	14 (11.9%)	Post-TAVR echo characteristics		
Prior cerebrovascular dis.	6 (5.4%)	11 (9.3%)	AV area, cm ²	1.7±0.4	1.6±0.4
Peripheral artery disease	7 (6.3%)	11 (9.3%)	Mean AV gradient, mmHg	13.4±5.1	14.3±5.4
Chronic lung disease	25 (22.5%)	31 (26.3%)	LVEF, %	64.4±10.0	64.2±9.5
Creatine clearance (ml/min)	61.0±21.5	59.2±18.7	Paravalvular aortic regurgitation		
Creatine clearance ≤50	38 (34.2)	47 (39.8)	Mild	105 (97.2%)	112 (97.3%)
Use of low-dose edoxaban	68 (61.3%)	-	Moderate or severe	3 (2.8%)	3 (2.7%)

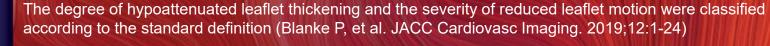

Completeness of Imaging & Neurocognitive Assessment

Measurement	Cardiac CT	Brain MRI	NIHSS	mRS	MoCA
Post-TAVR (~ before Discharge)		★ (98.3%)	★ (98.3%)	★ (98.3%)	★ (98.3%)
6-Mo follow-up	★ (95.9%)	★ (96.4%)	★ (95.5%)	★ (95.5%)	★ (95.5%)
Completeness of serial matching*		95.9%	93.7%	93.7%	93.7%

^{*} Completeness of imaging or neurological assessments at 6 months was estimated among eligible patients who were alive at 6 months and did not withdraw during follow-up.

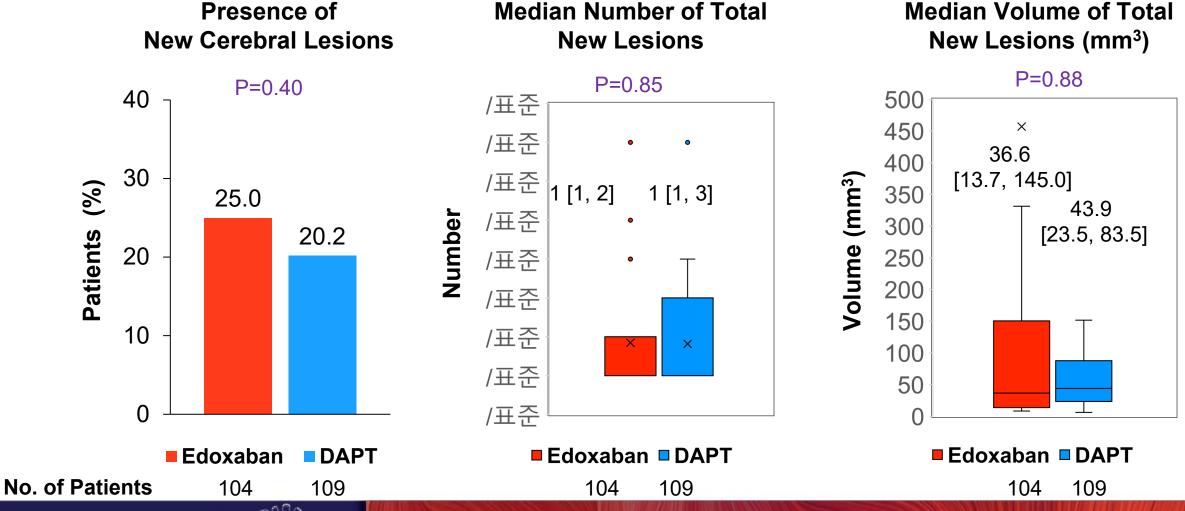
4D-CT Primary End Points

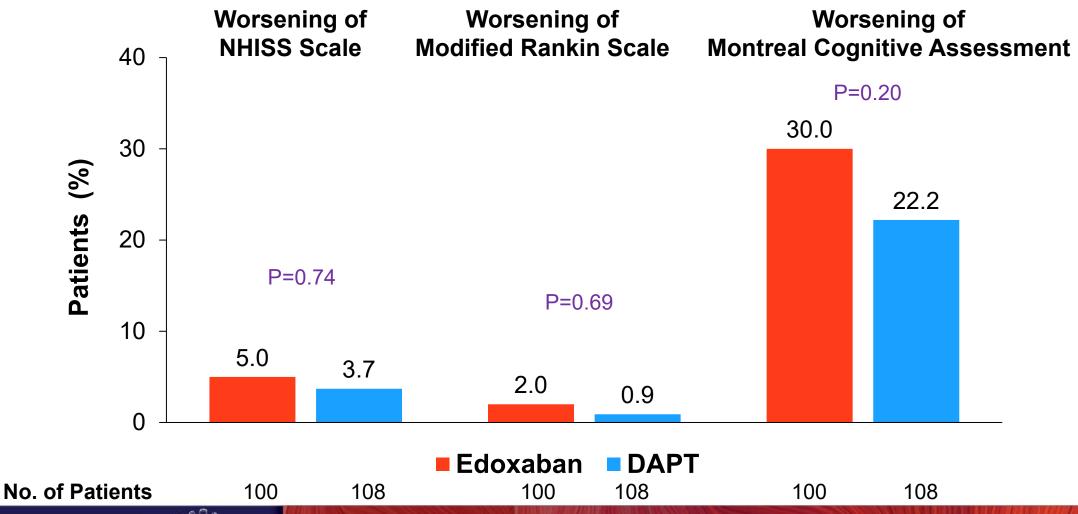




The degree of hypoattenuated leaflet thickening and the severity of reduced leaflet motion were classified according to the standard definition (Blanke P, et al. JACC Cardiovasc Imaging. 2019;12:1-24)

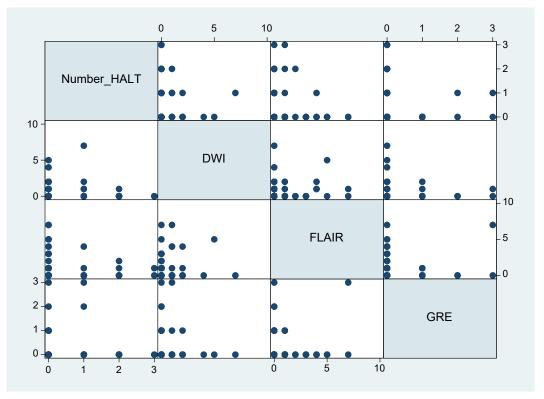
^{*}P values are derived from the chi-square test or Fisher's exact test as appropriate.


4D-CT Outcomes


*P values are derived from the chi-square test or Fisher's exact test as appropriate.

MRI End Points, ITT Analysis

Neurological & Neurocognitive End Points

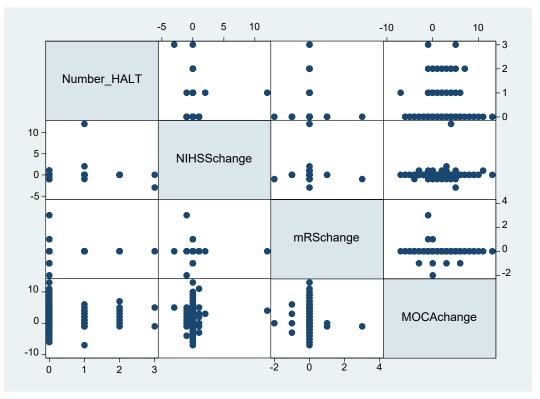


NIHSS, National Institutes of Health Stroke Scale

P values are derived from the chi-square test or Fisher's exact test as appropriate.

Worsening is defined as ≥1 point increase in NIHSS, ≥1 point increase in modified Rankin scale, or ≥1 point decrease in Montreal Cognitive Assessment scores as compared to baseline.

Association of Severity of HALT with Extent of New Lesions on Brain MRI



		Number of New Lesions Number of New Lesions Number of New		
		on DWI-MRI	on FLAIR-MRI	on GRE-MRI
Number of HALT Per-Patient	N	209	209	209
	Spearman Rho	0.09	-0.04	-0.02
	P-Value	0.19	0.60	0.81

HALT, hypoattenuated leaflet thickening; DWI, diffusion weighted image; FLAIR, fluid attenuated inversion recovery; GRE, gradient echo; MRI, magnetic resonance imaging

Association of Severity of HALT with Decline of Neurological Assessments

		Serial Change of NIHSS Score	Serial Change of mRS Score	Serial Change of MOCA Score
Number of HALT Per-Patient	N	204	204	204
	Spearman Rho	0.01	0.02	0.03
	P-Value	0.94	0.77	0.68

Clinical Outcomes at 6 Month, ITT Population

	Edoxaban group (N=111)	DAPT group (N=118)	Risk Difference (95% CI)	Hazard Ratio (95% CI)†
Outcomes*	n (%)	n (%)		
Efficacy Outcomes				
Death	3 (2.7%)	2 (1.7%)	1.0 (-2.8; 4.8)	1.48 (0.25-8.75)
Cardiovascular death	3	0		
Non-cardiovascular death	0	2		
Stroke	2 (1.8%)	2 (1.7%)	0.1 (-3.3; 3.5)	1.05 (0.15-7.45)
Ischemic	2	2		
Hemorrhagic	0	0		
Myocardial infarction	1 (0.9%)	3 (2.5%)	-1.6 (-4.9; 1.7)	0.45 (0.05-3.83)
Systemic thromboembolic event	2 (1.8%)	0 (0)	1.8 (-0.8; 4.4)	not applicable
Safety Outcomes				
Bleeding events	13 (11.7%)	15 (12.7%)	-1.0 (-9.5; 7.5)	0.93 (0.44-1.96)
Minor bleeding	7	11		
Major bleeding	6	3		
Life-threatening or disabling bleeding	0	1		
Rehospitalization	17 (15.3%)	14 (11.9%)	3.5 (-5.4; 12.3)	1.29 (0.67-2.49)

^{*} Clinical end points were adjudicated according to the VARC-2 and VARC-3 definitions.

[†] Hazard ratio (for edoxaban compared to DAPT) and corresponding 95% CI was calculated by the Cox proportional hazards models.

Limitations

- This trial was an open-label trial, which was potentially subject to reporting and ascertainment bias.
- This trial adopted surrogate imaging outcomes as the primary and key secondary end points; thus, our study was underpowered to detect any meaningful differences in clinical efficacy and safety outcomes.
- Follow-up period was relatively short; the long-term effect of leaflet thrombosis
 or different antithrombotic strategies on bioprosthetic valve durability is still
 unknown.
- Our findings cannot be directly extrapolated to patients with an established indication for OAC (approximately, one third of TAVR patients).

Conclusions

- The overall incidence of leaflet thrombosis on CT scans was less frequent (8.5% difference; risk ratio of 0.53) with the edoxaban therapy than with the DAPT therapy, although it did not reach statistical significance.
- The incidence of new cerebral thromboembolism on brain MRI and new development of neurological or neurocognitive dysfunction were not different between two groups.
- There was no association between subclinical leaflet thrombosis and temporally related changes of new cerebral thromboembolic lesions and neurological end points.

Circulation

Supplementary

Clinical Implications

- Subclinical leaflet thrombosis has not been proven to affect the clinical outcomes for patients who underwent TAVR, and thus this imaging phenomenon should not dictate the antithrombotic therapy for its prevention after TAVR.
- The absence of evidence of temporally related adverse clinical sequelae of imaging-detected subclinical leaflet thrombosis does not support the routine imaging screening tests for the detection of this phenomenon and imaging-guided antithrombotic strategies in cases without hemodynamic or clinical significance.