Pathological Findings of Self-Expanding Transcatheter Aortic Valves and Hypo-Attenuated Leaflet Thickening (HALT)

Yu Sato, MD¹;

Sho Torii, MD¹; Kazuyuki Yahagi, MD¹; Matthew Kutyna, BS¹; Takao Konishi, MD¹; Rika Kawakami, MD¹; Kenji Kawai, MD¹; Aimee E. Vozenilek, PhD¹; Saikat KB. Ghosh, PhD¹; John K. Forrest, MD²; Michael J. Reardon, MD³; Maria E. Romero, MD¹; Frank D. Kolodgie, PhD¹; Renu Virmani, MD¹; and Aloke V. Finn, MD^{1,4}

¹CVPath Institute, Inc., Gaithersburg, MD; ²Yale University School of Medicine, New Haven, CT; ³Houston Methodist DeBakey Heart and Vascular Center, Houston, TX; ⁴University of Maryland, Baltimore, MD

Disclosure Statement of Financial Interest

I, Yu Sato, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

CVPath Institute is the Pathology Core Laboratory contracted for Medtronicsponsored clinical trials.

Faculty disclosure information can be found on the app

Background

- Thrombus morphology evolves over time from a loose mesh of fibrin and platelets (acute stage) to a compact structure of acellular and cellular components (organizing thrombus) with eventual infiltration by smooth muscle cells and collagen (organized thrombus) that is resistant to treatment^{1,2}
- The gold standard for diagnosis of subclinical leaflet thrombosis after surgical or TAVR is 4-dimensional computed tomography (4DCT) scan. The characteristic finding on 4DCT is a hypo-attenuating opacity at the base of valve leaflets, or hypo-attenuating leaflet thickening (HALT)

Background

- HALT identified on functional cardiac CT can affect valve function and clinical outcomes, and thus identifying HALT may be important for improving the long-term durability of TAVs¹
- Higher resolution imaging such as microCT may yield further insights into the pathophysiology of HALT and is likely to be able to distinguish different stages of HALT
- Here for the first time, we compared microCT changes of HALT with histologic changes of valve thrombosis and characterization over time

Aim

- To evaluate the extent of pathologic changes of valve thrombosis, neointimal 1. thickening, inflammation, and calcification over time in TAVs explanted at surgery or autopsy
- To compare microCT findings of HALT with histologic findings of acute, 2. organizing, and organized thrombosis (resolution of microCT is in microns vs clinical CT in 0.5 mm)

MicroCT

Study design

- ✓ 123 explanted self-expanding TAVs were assessed from a population of >7500 participants from 11 clinical trials across surgical risk groups¹
 - Explanted valves represent <2% of all patients ightarrow
- \checkmark Clinical thrombosis rates were 0%–1.3% in these trials
- \checkmark Valves were explanted due to surgery (N = 34) or autopsy (N = 89)

Methods: Histological leaflet semi-quantitative scoring¹

Thrombus & Neointima

Length of involvement

Thrombus/neointima thickness

Leaflet

Thrombus/neointimal thickening

			Length			
	Thrombus/ Neointima score	<1/4	1/4 to <1/2	1/2 to <3/4	≥3/4	
	Absent	0	0	0	0	
(0	<1x leaflet thickness	0	1	2	3	
cknes	>1x but <2x leaflet thickness	1	2	3	4	
Thi	>2x but <4x leaflet thickness	2	3	4	5	
	>4x thickness	3	4	5	5	

Calcification

Score	Length
0	Absent
1	Microcalcification
2	<1/4 the length of the leaflet
3	1/4 to <1/2 the length of the leaflet
4	>1/2 the length of the leaflet

Inflammation

Distribution of inflammatory cells

Inflammatory cells

Inflammation Score	Focal	Multifocal	Diffuse
Absent	0	0	0
Single layer/superficial	0	1	2
Multilayered/superficial	1	2	3
Multilayered with superficial infiltration	2	3	4
Multilayered with deep infiltration	3	4	4

¹Yahagi K, et al. Catheter Cardiovasc Interv. 2017 ;90:1048-1057.

Score

0

2

3

4

Structural change

Fluid insudation

Intrinsic calcification

Description of structural change

Prosthetic leaflet collagen layers intact

Minimal fraying or splitting of surface collagen bundles with neointimal in-growth; with/without fluid insudation; minimal separation of collagen bundles

Mild separation of superficial collagen bundles with or without fluid insudation

Moderate separation, fracture, or fraying of collagen bundles with or without fluid insudation, and/or mild intrinsic calcification confined in the leaflet area

Vertical tears, fissures, or perforations in the leaflet collagen bundles with or without fluid insudation, and/or moderate or severe intrinsic calcification extending beyond the thickness of the leaflet

MicroCT HALT and histological leaflet thickening grading

- ✓ Of 110 TAVs, microCT image acquisition was performed in 40 cases
 - \checkmark 4 cases excluded (3 severe intrinsic calcification; 1 poor image quality)
 - ✓ 36 cases available for microCT analysis
- ✓ HALT on microCT was defined as increased leaflet thickness (>normal) and graded based on length of leaflet involvement (visual assessment)
- The composition of leaflet thickening was determined histologically and compared to HALT \checkmark

MicroCT HALT scoring

Based on the length of involvement of visible leaflet thickening¹

1. Blanke P. et al. JACC. 2020:75:2430-2442.

Histological Scoring

Based on thrombus/neointima thickness (>normal pericardial leaflet thickness) and length of leaflet involvement

Case characteristics

	Overall	<30 Days	30-365 Days	>365 Days	p Value
No. of cases	110	42 (38)	35 (32)	33 (30)	
Age, years	80.1 ± 9.5	82.4 ± 9.2	79.7 ± 9.4	77.4 ± 9.7	0.080
Female	41 (37)	21 (50)	9 (26)	11 (33)	0.077
Duration of implant, days	66 (12.8-622.5)	7.5 (1.8-15.3)	73 (48-133)	976 (793.5-1349.5)	<0.001
Valve type					0.120
CoreValve	90 (82)	37 (88)	28 (80)	25 (76)	
Evolut R	18 (16)	3 (7)	7 (20)	8 (24)	
Evolut PRO	2 (2)	2 (5)	0	0	
STS PROM, %	8.6 ± 5.9	10.8 ± 7.3	7.6 ± 4.2	6.7 ± 4.7	0.006
Hypertension	98 (89)	36 (86)	33 (94)	29 (88)	0.469
Diabetes mellitus	39 (36)	15 (36)	12 (34)	12 (36)	0.983
Baseline CrCl, ml/min	61.9 ± 35.7	57.3 ± 40.5	56.1 ± 27.2	73.5 ± 35.3	0.078
Reason of explant					0.444
Autopsy	82 (75)	34 (81)	24 (69)	24 (73)	
Aortic valve reintervention	28 (25)	8 (19)	11 (31)	9 (27)	
Baseline antiplatelet therapy	91/108 (84)	32/40 (80)	31 (89)	28 (85)	0.362
Baseline anticoagulants (VKA or DOAC)	24/108 (22)	11/40 (28)	8 (23)	5 (15)	0.297
CrCl = creatinine clearance; DOAC = direct oral anticoagulants; STS PROM = Society of Thoracic Surgeons Predicted Risk of Mortality; VKA = vitamin K antagonist					

CrCl = creatinine clearance; DOAC = direct oral anticoagulants; STS PROM = Society of Thoracic Surgeons Predicted Risk of Mortality; VKA = Data are presented as n (%), median (Q1-Q3) or mean ± SD.

CoreValve" Evolut" Clinical Program

Histological semi-quantitative scores by implant duration

✓ No change in thrombus and inflammation scores was observed over time

 Neointimal thickness, structural change, and calcification scores increased with greater implant duration

Statistical comparisons were made using a nonparametric Steel-Dwass all pairs test.

er time

Evaluation of leaflet thickening

- Histological leaflet thickening was evaluated in 320 leaflets from 110 cases including cases \checkmark with severe intrinsic calcification
- Of 320 leaflets, microCT was analyzed in 106 leaflets from 36 cases excluding severe \checkmark intrinsic calcification

Case characteristics	Histology group	MicroCT group
No. of cases	110	36
No. of leaflets evaluated	320	106
Age, years	80.1 ± 9.5	78.6 ± 8.8
Female	41 (37)	13 (36)
Duration of implant, days	66 (12.8-622.5)	125 (14.5-1182)
Reason of explant		
Autopsy	82 (75)	16 (44)
AV reintervention	28 (25)	20 (56)
STS PROM, %	8.6 ± 5.9	5.7 ± 3.7
Valve type		
CoreValve	90 (82)	21 (58)
Evolut R	18 (16)	13 (36)
Evolut PRO	2 (2)	2 (6)
Baseline antiplatelet therapy	91/108 (84)	28/34 (82)
Baseline anticoagulants	24/108 (22)	9/34 (27)

Data are presented as n (%), mean \pm . SD, or median (Q1-Q3).

p Value

0.43 0.90 0.25 < 0.001

0.008 0.016

Distribution of leaflet thickening grades in explanted values ✓ Approximately 45% of leaflets showed at least some degree of leaflet thickening Prevalence of leaflet thickening was comparable with microCT and histology

No leaflet thickening Leaflet thickening

- Grade 0
- Grade 1
- Grade 2
- Grade 3
- Grade 4

Histologic HALT occurred from acute, organizing, and organized thrombus

149 of 320 leaflets (46.6%) had any degree of leaflet thickening

Histology

Aortic side

Free edge

Ventricular side

Histological characteristics of leaflet thickening

- ✓ Leaflet thickening was observed more frequently in implants of longer duration
- ✓ All thrombi were acute at <30 days, while most organizing thrombi occurred after 30 days
- ✓ Thrombi were most organized after 1 year

uration rred after 30 days

Limitations

- This was a pathological analysis of a small subset (<2%) of self-expanding valves implanted from 11 clinical trials
- Valves explanted at autopsy could be obtained from patients with cardiovascular or noncardiovascular death and may not be representative of a population with valve failure
- Pathological findings are not linked to clinical outcomes and cases cannot be \bullet compared to living patients

Summary

- \checkmark This is the first study to compare microCT and histology findings of leaflet thickening (45% of explanted values)
 - \checkmark Clinical thrombosis rates are extremely low in clinical trials of self-expanding TAVs (0%–1.3% across 11 clinical trials)
- ✓ There was no relationship between duration of implant and thrombus and inflammation scores, while neointimal thickening, structural change, and calcification scores increased with time, and were most pronounced after 1 year
- \checkmark Histologic examination confirmed 3 types of thrombi: acute, organizing, and organized (which could not be differentiated by microCT). Implants greater than 30 days showed findings consistent with organization while the majority of those greater than 1 year were either organizing or organized
 - \checkmark These findings may explain why oral anticoagulation therapy is not always effective and suggests that identification of HALT, and response to treatment, may be most effective within the first year after implantation, especially in younger patients.

