A Landmark Randomized Clinical Trial of Transcatheter Repair for Tricuspid Regurgitation

Paul Sorajja and David H. Adams On behalf of the TRILUMINATE Pivotal investigators

March 4, 2023

- Consulting or Advisory Board: 4C Medical, Abbott Structural, Anteris, Boston Scientific, Edwards Lifesciences, Foldax, Medtronic, Phillips, Siemens, Shifamed, VDyne, WL Gore, xDot
- Institutional Research: Abbott Structural, Boston Scientific, Edwards Lifesciences, Medtronic
- National P.I.: EXPAND II, Highlife (US), SUMMIT-MAC, SOAR-EFS, TRILUMINATE Pivotal, VISTA

Tricuspid Regurgitation

- Tricuspid regurgitation is common, and associated with impaired survival and poor quality-of-life
- Diuretics is the main therapy, with surgery for selected patients and often at high operative risk
- Limited data exist in right-sided valvular disease, and knowledge is often inferred from left-sided understanding
- Transcatheter tricuspid therapies have recently emerged, but their benefit has not been studied in a randomized, controlled clinical trial

Scientific Objective

The TRILUMINATE Pivotal Trial is designed to evaluate the safety and effectiveness of transcatheter tricuspid repair with the TriClip™ device in symptomatic patients with severe tricuspid regurgitation who are intermediate or greater estimated risk for mortality with tricuspid valve surgery

Study Leadership

Steering Committee

David Adams	Mou
Jörg Hausleiter	Univ
Patrick McCarthy	Nort
Paul Sorajja	Minr
Raj Makkar	Ceda
Ralph Stephan	Univ
von Bardeleben	Gute
Randolph Martin	Bay
Raymond Benza	Ohio
Rebecca Hahn	New
Saibal Kar	Los
Scott Lim	Univ
Susheel Kodali	New
Ulrich Jorde	Mon
Vinod Thourani	Pied

nt Sinai Hospital versität München hwestern University eapolis Heart Institute ars-Sinai Medical Center ersity Medicine of the Johannes enberg University Mainz Labs, Inc. State University York-Presbyterian/CUMC Robles Medical Center versity of Virginia Medical Center York-Presbyterian/CUMC tefiore Medical Center dmont Hospital

Anatomic Eligibility Committee

Tom

Anita Asgar	Montreal Heart Institute
Brian Whisenant	Intermountain Medical Center
Gagan Singh	UC - Davis Medical Center
Gilbert Tang	Mount Sinai Hospital
Hursh Naik	Arizona CV Research Center
M. Azeem Latib	Montefiore Medical Center
Marta Sitges	Hospital Clinic Barcelona
Matthew Price	Scripps Health
Moody Makar	Cedars-Sinai Medical Center
Neil Fam	St. Michael's Hosital
Paul Sorajja	Minneapolis Heart Institute
Philipp Lurz	Universität Leipzig
Ralph Stephan	University Medicine of the Johannes
von Bardeleben	Gutenberg University Mainz
Rebecca Hahn	New York-Presbyterian/CUMC
Richard Bae	Minneapolis Heart Institute
Saibal Kar	Los Robles Medical Center
Scott Lim	University of Virginia Medical Center
Susheel Kodali	New York-Presbyterian/CUMC
Tom Smith	UC Davis

Patient Management Eligibility Committee

Andrew Sauer	Saint Luke's Health System
Sandhya Murthy	Montefiore Medical Center
Raymond Benza	Ohio State University
Ulrich Jorde	Montefiore Medical Center

Echocardiographic Core Lab

Rebecca Hahn	Cardiovascular Research Foundation
Nadira Hamid	Cardiovascular Research Foundation

TriClip™ G4 Delivery System

F/E KNOB

Flexes and extends delivery catheter to steer down to the valve plane

S/L KNOB-

Enables movement in septal or lateral direction

+/- KNOB-

Provides the height needed above the valve plane

DISTAL CURVE-

Anatomically designed for direct access to the valve

CONTROLLED GRIPPER **ACTUATION**

Ability to optimize leaflet grasping if needed

<u>6 mm</u>

4 CLIP SIZES

Broad range of sizes for tailored treatment

Study Enrollment Criteria

Key Inclusion Criteria

- Severe, symptomatic TR
- Stable GDMT and/or device therapy for heart failure for ≥ 30 days
- ≥ Intermediate risk of mortality/morbidity with tricuspid valve surgery

Key Exclusion Criteria

- Indication for other valve disease intervention
- Severe pulmonary HTN
- Left ventricular ejection fraction ≤20%
- Anatomy not suitable for TriClip therapy

Enrollment and Treatment Pathway

Endpoints and Analysis

Trial Design	 Prospective, randomized, controlled, multi-center trial designed to test the superiority of TriClip[™] therapy in addition to medical therapy (Device group) over medical therapy alone (Control group) 450+ subjects enrolled at up to 80 sites in the US, Canada, Europe
Primary Endpoint	To be assessed after the first 350 randomized subjects complete 12-month follow-up A composite of mortality or tricuspid valve surgery, heart failure hospitalizations, and quality of life improvement ≥15 points assessed using the Kansas City Cardiomyopathy Questionnaire (KCCQ), evaluated at 12 months in a hierarchical fashion using the Finkelstein-Schoenfeld methodology
Secondary Endpoint	 Assessed hierarchically in the following order: Freedom from major adverse events (MAE) after procedure attempt (femoral vein puncture) at 30 days (Device group only) Change in KCCQ at 12 months (superiority of Device vs. Control) TR Reduction to moderate or less at 30-day post procedure (superiority of Device vs. Control) Change in 6MWD at 12 months (superiority of Device vs. Control)

MAE defined as composite of Cardiovascular Mortality, New Onset Renal Failure, Endocarditis Requiring Surgery, and Non-Elective Cardiovascular Surgery for TriClip device-related AE post-index procedure.

Broad Geographical Participation 🔤 63 🛛 🆊 6 🔅 6

- Abbott Northwestern Hospital
- Allegheny General Hospital- ASRI
- Arizona Cardiovascular Research Center
- Aurora Medical Group
- Austin Heart
- Baptist Hospital of Miami
- Baylor Scott & White Heart & Vascular Hospital
- Beth Israel Deaconess Medical Center
- Brigham & Women's Hospital
- Buffalo General Hospital
- California Pacific Medical Center -Van Ness Campus
- Cardiovascular Institute of the South
- Cardiovascular Research Institute of Kansas
- Carolinas Medical Center
- Cedars-Sinai Medical Center
- Centennial Heart Cardiovascular Consultants

- Christ Hospital
- El Camino Hospital
- Hospital of the University of Pennsylvania
- Inova Fairfax Hospital
- Intermountain Medical Center
- JFK Medical Center
- Kansas University Medical Center
- Los Robles Regional Medical Center
- Manatee Memorial Hospital
- MedStar Health Research Institute
- Methodist Hospital of San Antonio
- Montefiore Medical Center Moses Division
- Morton Plant Valve Clinic
- Mount Sinai Hospital
- New York-Presbyterian/Columbia
 University Medical Center
- North Shore University Hospital
- Northshore University HealthSystem
- Novant Health Heart and Vascular

Research Institute

- Ohio Health Research Institute
- Phoenix Cardiovascular Research Group
- Piedmont Heart Institute
- Providence Heart & Vascular Institute
- Providence Medical Foundation
- Rush University Medical Center
- Scripps Health
- Sentara Norfolk General Hospital
- St. Thomas Hospital
- Sutter Medical Center, Sacramento
- Swedish Medical Center
- Tallahassee Research Institute
- The Cleveland Clinic Foundation
- The Methodist Hospital
- Tucson Medical Center
- University Hospital Univ. of Alabama at Birmingham (UAB)
- University of California Davis

Medical Center

- University of Colorado Hospital
- University of Pittsburgh Medical Center
- University of Virginia Medical Center
- Yale New Haven Hospital
- Hamilton Health Science Centre
- Herzzentrum Leipzig GmbH
- Hospital Clínic de Barcelona
- Institut de Cardiologie de Montreal (Montreal Heart Inst.)
- Munchen Grosshadern
- Ospedale San Raffaele Cardiac
- Ottawa Heart Institute
- St. Michael's Hospital
- St. Paul's Hospital
- Sunnybrook Health Sciences Centre
- Universitatsklinikum Bonn AdoR
- Universitatsmedizin der Johannes
 Gutenberg-Universitat Mainz

Baseline Characteristics

	Device N=175 # (%)	Control N=175 # (%)		Device N=175 # (%)	Control N=175 # (%)
Age, Mean (years)	78.0 ± 7.4	77.8 ± 7.2	TR Severity		
Sex (Female)	98 (56.0)	94 (53.7)	Moderate	4 (2.3)	2 (1.2)
NYHA class III or IV	104 (59.4)	97 (55.4)	Massive	44 (25.4) 37 (21.4)	49 (29.7) 30 (18.2)
KCCQ Score, mean	56.0 ± 23.4	54.1 ± 24.2	Torrential	88 (50.9)	84 (50.9)
Hypertension	142 (81.1)	141 (80.6)	Etiology (functional)	165 (94.8)	158 (92.9)
Renal disease	62 (35.4)	62 (35.4)	Coaptation Gap, Mean (mm)	5.5 ± 1.8	5.2 ± 1.7
Liver disease	11 (6.3)	16 (9.1)	Heart size/function, Mean		
Atrial fibrillation	153 (87.4)	162 (92.6)	RVEDD (base, cm)	5.0 ± 0.8	5.2 ± 0.8
Diabetes	28 (16.0)	27 (15.4)	TV annulus diameter (cm)	4.3 ± 0.7	4.5 ± 0.8
COPD	19 (10.9)	24 (13.7)	RV TAPSE (cm)	1.7 ± 0.4	1.6 ± 0.4
CRT/CRT-D/ICD/PPM	28 (16.0)	24 (13.7)	LVEF (%)	59.3 ± 9.3	58.7 ± 10.5
Prior aortic intervention	27 (15.4)	27 (15.4)	CO (L/min)	41+12	42+11
Prior mitral intervention	45 (25.7)	42 (24.0)			
Prior tricuspid intervention	1 (0.6)	0 (0.0)			

Reduction in TR Severity

Paired Analyses

Primary Endpoint

Finkelstein-Schoenfeld Analysis

Individual Component Analysis

1st Component: Mortality or TV Surgery p=0.75 2nd Component: Heart Failure Hospitalization p=0.41

Quality-of-life Improvement 3rd Component, KCCQ change ≥15 pts, baseline to 1-yr

Relationship between TR and Quality of Life

Change in KCCQ vs Residual TR at 1-yr

20 18 1-year (pts) KCCQ 8, Baseline to 1-year (pts) 16 18 16 16 14 14 12 KCCQ δ, Baseline to 12 10 10 8 8 6 6 6 4 4 4 2 2 2 0 0 $\mathbf{0}$ Moderate or less (n=133) Severe/Massive/Torrential Worsens No change 1 grade (n=149) (n=46) (n=67)(n=35) Residual TR at 1 Year TR Change (Baseline to 1 Year)

Change in KCCQ vs Change in TR severity

18

≥2 grade

(n=125)

RIAL

VOTAL

Hierarchical Secondary Endpoints

	Device Group (N=175)	Control Group (N=175)	Difference (95% Cl)	p-value
Freedom from MAE through 30 Days post procedure – Kaplan-Meier estimate of event-free rate (lower 97.5% Cl) ¹	98.3	-	-	<0.001
Change in KCCQ from baseline to 12 months (pts) ² Endpoint analysis Non-imputed data	12.3 15.2	0.6 4.8	11.7 10.4	<0.001 -
TR Severity ≤ Moderate at 30 Days – no./total no (%)	87.0	4.8	-	<0.001
Change in 6-min walk test distance from baseline to 12 months (m) ² Endpoint analysis Non-imputed data	-8.1 11.5	-25.2 -8.7	17.1 20.3	0.25 -

¹ MAE Performance Goal 90%

² Subjects who experienced a heart failure related cardiovascular death or received tricuspid valve surgery had KCCQ score and 6MWT distance imputed as 0 at 12 months. 6MWT also imputed as 0 for subjects unable to exercise due to cardiac reasons.

Safety Profile

Major Adverse Event (MAE)DeviceThrough 30 Days Post-Procedure – no.(%)N=172+

Total	3 (1.7%)
Cardiovascular mortality	1 (0.6%)
Endocarditis requiring surgery	0 (0%)
New-onset renal failure	2 (1.2%)
Non-elective CV Surgery, TVRS for device- related AE	0 (0%)

Other Clinical Safety Endpoints Device N=172⁺ Through 30 Days Post-Procedure– no.(%) Any-cause mortality 1 (0.6%) Tricuspid valve surgery 1 (0.6%) Tricuspid valve re-intervention 3 (1.7%) Major bleeding[#] 8 (4.7%) Tricuspid mean gradient \geq 5mmHg 8 (4.7%) Single leaflet device attachment (SLDA)* 12 (7.0%) Stroke 1 (0.6%) Myocardial Infarction 0 (0%) Embolization* 0 (0%) Thrombosis 0 (0%) New CRT/CRT-D/ICD/perm. pacemaker^ 1 (0.6%)

†Attempted procedure population (3 subjects randomized to Device withdrew consent prior to index procedure)
#Defined as bleeding ≥ Type 3 based on a modified Bleeding Academic Research Consortium (BARC) definition
*SLDA and embolization evaluated through 30-day follow-up
^Assessed through adverse event reporting

Limitations

- Since patients were not blinded, a Hawthorne effect may have played a role in outcomes in both groups
- The trial was conducted almost entirely during the COVID-19 pandemic, which may have affected clinical outcomes

Summary

- TR was reduced by TriClip therapy to moderate or less in 87%, vs. only 4.8% for the control group, and reduction was sustained to 1year follow-up
- The primary endpoint was met (p=0.02) demonstrating device superiority, driven mainly by significant improvement in QOL
- Degree of TR reduction was related to degree of improvement in QOL
- The 30-day MAE rate was only 1.7%, and death and pacemaker implant each occurred in 0.6%
- Survival free of mortality and TV surgery was high at 1 year in both groups (~90%)

Conclusions

- TRILUMINATE Pivotal is a pioneering study as the first RCT in this unique population of patients with severe TR
- The TriClip device was highly effective in reducing TR and led to significant improvements in quality of life at one year, without the high procedural risk often associated with tricuspid surgery.
- These results are very meaningful for a highly symptomatic population whose quality of life is impacted by TR
- With the excellent benefit-to-risk profile of the TriClip system, a historically untreated population will have a treatment option to improve their quality of life

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter Repair for Patients with Tricuspid Regurgitation

Paul Sorajja, M.D., Brian Whisenant, M.D., Nadira Hamid, M.D.,
Hursh Naik, M.D., Raj Makkar, M.D., Peter Tadros, M.D., Matthew Price, M.D.,
Gagan Singh, M.D., Neil Fam, M.D., Saibal Kar, M.D.,
Jonathan G. Schwartz, M.D., Shamir Mehta, M.D., Richard Bae, M.D.,
Nishant Sekaran, M.D., Travis Warner, M.D., Moody Makar, M.D.,
George Zorn, M.D., Erin Spinner, Ph.D., Phillip M. Trusty, Ph.D.,
Raymond Benza, M.D., Ulrich Jorde, M.D., Patrick McCarthy, M.D.,
Vinod Thourani, M.D., Gilbert H.L. Tang, M.D., Rebecca Hahn, M.D., and
David H. Adams, M.D., for the TRILUMINATE Investigators*

