Pulsed Field Ablation Treatment in Paroxysmal and Persistent Atrial Fibrillation Patients:

Acute and Long-term Outcomes from the *PULSED AF* Pivotal Trial

Dr. Atul Verma

On behalf of the PULSED AF Investigators @atulverma_md

Disclosures

CompanyRelationshipMedtronicConsultant/ Honoraria/ Research grantBiosense WebsterConsultant/ Honoraria/ Research grantBiotronikResearch grantBayerResearch grant/ HonorariaKardiumConsultantMedlumicsConsultant/ Honoraria

The PULSED AF study (NCT04198701) was funded by Medtronic, Inc.

Reference materials were requested and obtained from Medtronic, Inc. for portions of this presentation.

The Medtronic PulseSelect[™] PFA system is investigational, not approved in the US.

The following data and analyses have not been reviewed by any regulatory bodies, including FDA.

Introduction

- Catheter ablation is an effective treatment for patients with symptomatic, drug-refractory atrial fibrillation.^{1,2}
- Thermal modes of ablation are limited by the potential for collateral tissue damage.³
- Pulsed field ablation creates lesions in cardiac tissue non-thermally and within milliseconds through the mechanism of irreversible electroporation (IRE).^{4,5}
- IRE involves tissue exposure to high electric field gradients, inducing cell membrane hyper-permeabilization leading to cell death.⁶
- 1. Calkins H et al. Europace. 2018;20:e1-e160
- 2. Hindricks Get al. Eur Heart J. 2021;42:373-498.
- 3. Cappato R et al. Circ Arrhythm and Electrophysiol. 2010;3:32-38

- 4. Stewart MT et al. J Cardiovasc Electrophysiol. 2021;32:958-969.
- 5. Yarmush ML et al. Annu Rev Biomed Eng. 2014;16:295-320.
- 6. Kotnik T et al. Annu Rev Biomed Eng. 2019;48:63-91.

One application = 4 bipolar, biphasic trains lasting 100-200 ms, 2800-3000 V peak to peak

PULSED AF Study Design

PULSED AF: prospective, global, multi-center, non-randomized paired single-arm trial

41	67	9	150	150
Centers	Operators	Countries	Paroxysmal AF	Persistent AF

Key Inclusion Criteria

- Prior antiarrhythmic drug failure
- Diagnosis of recurrent symptomatic paroxysmal or persistent AF
- 18-80 years old

Key Exclusion Criteria

- Long-standing persistent AF (continuous AF that is sustained >12 months)
- Left atrial diameter > 5.0 cm
- · Prior left atrial ablation or surgery
- Patient not on oral anticoagulation therapy for at least 3 weeks prior to procedure

Patients underwent pulmonary vein isolation using the Pulsed Field Ablation System (PulseSelect[™]) and were followed for 12 months

Primary Efficacy Endpoint

Freedom from a composite endpoint of acute procedural failure, arrhythmia recurrence, repeat ablation, direct current cardioversion, left atrial surgery, or antiarrhythmic drug escalation through 12 months (excluding a 90-day blanking period)

Pre-Specified Performance Goal: >50% (paroxysmal) or >40% (persistent) at 12 months

All cardiac monitoring was adjudicated by an independent core laboratory

Cardiac Monitoring During Follow-up

	1-M	2-M	3-M	4-M	5-M	6-M	7-M	8-M	9-M	10-M	11-M	12-M
ТТМ				Weekly and symptomatic transmissions								
ECG			X			Х						Х
НМ						Х						Х
	В	lanking peri	od	Post-blanking period								

Primary Safety Endpoint

Freedom from a composite of serious procedure and device-related adverse events

Pre-Specified Performance Goal: <13%

All primary safety endpoint events were adjudicated by an independent clinical events committee

Patient Flow Diagram

96% of patients reached 12-month follow-up

Results: Patient Baseline Characteristics

Patient Characteristics		Paroxysmal (n = 150)	Persistent (n = 150)
Male Sex		64%	75%
Age (years)		63.4 ± 9.9	66.0 ± 9.0
Left Atrial Diameter (mm)		38.7 ± 5.8	42.0 ± 5.0
Left Ventricular Ejection Fraction (%		$60.3 \pm 4.8^{+}$	57.6 ± 6.4
Years Since AF Onset		3.8 ± 6.2	2.7 ± 3.7
Number of Failed Antiarrhythmic Dru	ıgs	1.3 ± 0.6	1.3 ± 0.6
Cardioversions Prior to Enrollment	Electrical	22%	62%
	Pharmaceutical	10%	7%
Body Mass Index (kg/m²)		28.6 ± 5.9	30.9 ± 6.8
Medical History			
Stroke		3%	2%
Transient ischemic attack		1%	2%
Myocardial infarction		5%	5%
Coronary artery disease		21%	21%
Hypertension		49%	65%
Obstructive sleep apnea		20%	31%
Valve dysfunction		15%	11%
Diabetes		16%	14%
CHA ₂ DS ₂ VASc		1.8 ± 1.4	2.1 ± 1.4
Data represented as mean ± SD or percentage: †n	=149		

Procedural Characteristics

Parameter	Paroxysmal (n = 150)	Persistent (n = 150)
Acute Pulmonary Vein Isolation	100%	100%
Skin-to-skin Procedure Time (min)*	125 (102-157)	133.5 (107-173)
Device Left Atrial Dwell Time (min) [†]	58.5 (46-76)	62.5 (51-84)
Time Between First and Last Application	53 (40-68)	60 (45-77)
Fluoroscopy Time (min)	21 (15-31)	23 (14-38)
Total pulsed field ablation energy delivered (sec)	23 (19-28)	27 (23-34)
Number of applications per procedure	43.5 (37-54)	52.5 (44-67)
Type of anesthesia used – no. (%) General anesthesia Deep sedation Conscious sedation	89% 5% 5%	84% 7% 9% 7%
Neuromuscular Blockade Use	1 70/	65%
Intra-procedural Cardioversions		
Max esophageal temperature change from baseline (°c)	0.3 (0.1-0.5) §	0.2 (0.0-0.5) II
Mapping / Navigation system used – no. (%) CARTO EnSite Rhythmia	26% 57% 11% 5%	23% 59% 10% 8%

Data represented as median (IQR) or percentage; *First sheath in, to last sheath out; †Includes protocol-mandated 20-minute wait period and post-ablation mapping §Data were available for 67 patients; IData were available for 73 patients.

Primary Efficacy Results

Freedom from a composite endpoint of acute procedural failure, arrhythmia recurrence, repeat ablation, direct current cardioversion, left atrial surgery, or antiarrhythmic drug escalation through 12 months (excluding a 90-day blanking period)

Both paroxysmal and persistent atrial fibrillation cohorts met predetermined effectiveness performance goals.

Freedom from AT/AF/AFL

Paroxysmal Atrial Fibrillation

Persistent Atrial Fibrillation

Freedom from atrial arrhythmia recurrence at 12 months was 69.5% in the paroxysmal and 62.3% in the persistent atrial fibrillation cohort

Clinical Success

Clinical success was defined as freedom from symptomatic atrial arrhythmia recurrence at 12 months

Freedom from symptomatic recurrence is based on trans-telephonic monitoring only

Primary Safety Results

0.7% safety event rate in each cohort

Both paroxysmal and persistent atrial fibrillation cohorts met predetermined safety performance goals (<13%, p=0.002)

	Number with a Prin	nary Safety Event
Primary Safety Event	Paroxysmal AF (n = 150)	Persistent AF (n = 150)
Within 6 months		
Pulmonary vein stenosis (>70% diameter reduction)	0	0
Phrenic nerve injury/diaphragmatic paralysis ongoing at 6 months	0	0
Atrioesophageal fistula	0	0
Within 30 days		
Cardiac tamponade/perforation	0	1
Cerebrovascular accident	1	0
Transient ischemic attack	0	0
Major bleeding requiring transfusion	0	0
Myocardial infarction	0	0
Pericarditis requiring intervention	0	0
Vagal nerve injury resulting in esophageal dysmotility or gastroparesis	0	0
Vascular access complications requiring intervention	0	0
Death	0	0
PFA system- or procedure-related cardiovascular and pulmonary adverse event prolonging/requiring hospitalization >48 hours (excluding recurrent AF/AFL/AT)	0	0

Quality of Life

Quality of life measures indicate a <u>clinically meaningful improvement¹⁻³</u>

MCID: 5 points AFEQT, 0.3 EQ5D (Holmes et al, 2019; Coretti et al, 2014)

PV Stenosis Sub-Study

No moderate or severe stenosis was observed in 275 pulmonary veins on cardiac computed tomography or MRI imaging at 3 months

		Pulmonary Vein Diameter Change		
		Moderate Change	Severe Change	
Vein	N*	<u>no. (%)</u> 1	no. (%)²	
All	275	0 (0)	0 (0)	
RIPV	63	0 (0)	0 (0)	
RSPV	62	0 (0)	0 (0)	
RMPV	9	0 (0)	0 (0)	
LIPV	63	0 (0)	0 (0)	
LSPV	63	0 (0)	0 (0)	
LCPV	15	0 (0)	0 (0)	

Pulmonary Vein Stenosis Sub-Study

¹50-70% reduction, ¹≥70% reduction.

Cerebral MRI Sub-Study

New silent cerebral lesions were observed in 4 of 45 patients (9%) undergoing cerebral MRI at baseline and within 72 hours post-ablation

Cohort	Number of Patients	Silent Cerebral Lesions no. (%)
Paroxysmal AF	26	2 (8)
Persistent AF	19	2 (11)
Total	45*	4 (9)

Cerebral MRI Sub-Study

Conclusion

- Primary safety endpoint rate of 0.7% observed for both cohorts
 - No occurrence of phrenic, esophageal, pulmonary vein injury, or coronary artery spasm
 - Both paroxysmal and persistent atrial fibrillation cohorts met predetermined safety performance goals (<13%)
- Acute isolation was demonstrated in 100% of all pulmonary veins
- Both paroxysmal and persistent atrial fibrillation cohorts met predetermined effectiveness performance goals
 - 66.2% freedom from a primary efficacy endpoint event in paroxysmal AF patients
 - 55.1% freedom from a primary efficacy endpoint event in persistent AF patients
- Pulsed field ablation resulted in a clinically meaningful improvements in quality of life
- Pulsed field ablation resulted in 79.7% (paroxysmal) and 80.8% (persistent) clinical success

PULSED AF Committees

Steering Committee

Dr. Atul Verma	Southlake Regional Health Center, Toronto, Canada
Dr. Lucas V.A. Boersma	St Antonius Hospital, Nieuwegein, Netherlands
Dr. Hugh Calkins	Johns Hopkins Hospital, Baltimore, MD
Dr. Prashanthan Sanders	Univ of Adelaide & Royal Adelaide Hospital, Adelaide, Australia
Dr. David E. Haines	Beaumont Health, Royal Oak, MI
Dr. Francis E. Marchlinski	Hospital of the Univ of Pennsylvania, Philadelphia, PA
Dr. Andrea Natale	Texas Cardiac Arrhythmia Institute, Austin, TX
Dr. Gerhard Hindricks	Heart Center - University of L, Leipzig, Germany
Dr. Douglas L. Packer	Mayo Clinic-St. Mary`s Hospital, Rochester, MN
Dr. Karl-Heinz Kuck	LANS Cardio, Hamburg, Germany

Clinical Events Committee

Data Monitoring Committee

Dr. Wendy Tzou	Dr. George Crossley
Dr. Pierre Fayad	Dr. Timothy Church
Dr. Peter Friedman	Dr. Daryl Gress
Dr. Melissa Robinson	Dr. Carina Blomström-Lundqvist
Dr. Jonathan Steinberg	Dr. Stephan Willems
	Dr. Jeanne Poole

PULSED AF Investigators

ACC.23

Principal Investigator	Site Name	Principal Investigator	Site Name
David DeLurgio (co-author)	Emory Saint Joseph's Hospital (Atlanta GA)	Bradley Knight	Northwestern University
Nitesh Sood (co-author)	Southcoast Health System	Mattias Duytschaever	AZ Sint-Jan Brugge-Oostende av
Hiroshi Tada (co-author)	University of Fukui Hospital	Larry Chinitz	NYU Langone Medical Center
Robert Hoyt	lowa Heart Center	John Rhyner	Mission Hospital
Andrea Natale	Texas Cardiac Arrhythmia Research Foundation	Ángel Arenal Maiz	Hospital General Universitario Gregorio Marañón
James Irwin	BayCare Medical Group Cardiology	Ethan Ellis	Medical Center of the Rockies
David Haines	Beaumont Health System	Jason Andrade	Vancouver General Hospital
Suneet Mittal	The Valley Hospital	J. Michael Mangrum	University of Virginia Medical Center
Sarfraz Durrani	MedStar Washington Hospital Center	Bradley Wilsmore	John Hunter Hospital
Robert Sangrigoli	Doylestown Health Cardiology	Alexandre Zhao	CMC - Clinique Ambroise Paré
Luigi Di Biase	Montefiore Medical Center	Raman Mitra	Northwell Health
Oussama Wazni	Cleveland Clinic	Alefiyah Rajabali	Providence Saint Vincent Medical Center
Atul Verma	Southlake Regional Health Centre	Sandeep Jain	University of Pittsburgh Medical Center
Jose Osorio	Grandview Medical Center	Andre Gauri	Spectrum Health
Teiichi Yamane	The Jikei University Hospital	Peter Noseworthy	Mayo Clinic (Rochester MN)
Tetsuo Sasano	Tokyo Medical and Dental University Hospital	Vidal Essebag	McGill University Health Centre (MUHC)
Hirofumi Tomita	Hirosaki University Hospital	Jean-Francois Sarrazin	Institut Universitaire de Cardiologie et de Pneumologie
Sanjaya Gupta	St. Luke's Mid America Heart Institute		de Québec
Helmut Friedrich Pürerfellner	Ordensklinikum Linz GmbH / Elisabethinen	Darryl Wells	Swedish Medical Center
Francis E Marchlinski	Hospital of the University of Pennsylvania	John Hummel	The Ohio State University Heart and Vascular Research
Lucas V.A. Boersma	St. Antonius Ziekenhuis		Organization
Hugh Calkins	The Johns Hopkins Hospital	Prashanthan Sanders	Royal Adelaide Hospital

Thank you to all PULSED AF investigators and all patients

On behalf of Dr. Atul Verma and the PULSED AF steering committee

@atulverma_md

Announcing publication release:

ORIGINAL RESEARCH ARTICLE

Pulsed Field Ablation for the Treatment of Atrial Fibrillation: PULSED AF Pivotal Trial

