Efficacy and Safety of Acoramidis in Transthyretin Amyloid Cardiomyopathy

Results of the ATTRibute-CM Trial

Julian D. Gillmore,1 Daniel P. Judge,2 Francesco Cappelli,3 Marianna Fontana,1 Pablo Garcia-Pavia,4,5,6 Simon Gibbs,7 Martha Grogan,8 Mazen Hanna,9 James Hoffman,10 Ahmad Masri,11 Mathew S. Maurer,12 Jose Nativi-Nicolau,13 Laura Obici,14 Frank Rockhold,15, 16 Keyur B. Shah,17 Prem Soman,18 Jyotsna Garg,15 Karen Chiswell,15 Haolin Xu,15 Xiaofan Cao,19 Ted Lystig,19 Uma Sinha,19 and Jonathan C. Fox19

1National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Hospital, London, UK; 2 The Medical University of South Carolina, Charleston, SC, USA; 3Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy; 4Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, CIBERCV, Manuel de Falla 2, 28222 Madrid, Spain; 5Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain; 6European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart; 7The Victorian and Tasmanian Amyloidosis Service, Department of Haematology, Monash University Eastern Health Clinical School, Box Hill, Victoria, Australia; 8Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA; 9 Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA; 10 Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; 11Cardiac Amyloidosis Program, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; 12Cardiac Amyloidosis Program, Division of Cardiology, Columbia College of Physicians and Surgeons, New York NY, USA; 13 Amyloidosis Program, Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; 14Amyloidosis Research and Treatment Center, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy; 15Duke Clinical Research Institute, Durham, NC, USA; 16Duke University Medical Center, Durham, NC, USA; 17The Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA; 18Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 19BridgeBio Pharma, San Francisco, CA, USA

27 Aug 2023
Disclosures

Advisor/consultant for BridgeBio, Alnylam, Ionis, AstraZeneca, Intellia, Pfizer, ATTRalus, Lycia

Acoramidis is an investigational molecule. The safety and efficacy have not been fully evaluated by regulatory authorities.
ATTRibute-CM: Study Design

Key eligibility criteria
- Subjects with diagnosed ATTR-CM (WT or variant)
- NYHA Class I-III
- ATTR-positive biopsy or 99mTc scan
- Light chain amyloidosis excluded if diagnosis by 99mTc

Screening and randomization

30-month primary endpoint:
Hierarchical analysis consisting of all-cause mortality, cumulative frequency of CVH, change from baseline in NT-proBNP, and change from baseline in 6MWD

Efficacy assessment included 611 participants in the pre-specified mITT population (eGFR ≥30 mL/min/1.73 m²)

Tafamidis usage allowed after Month 12

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 mg acoramidis HCl twice daily</td>
<td>N = 421</td>
</tr>
<tr>
<td>placebo twice daily</td>
<td>N = 211</td>
</tr>
</tbody>
</table>

6MWD = Six-minute walk distance; NYHA = New York heart association; 99mTc = Technetium labeled pyrophosphate (PYP) or bisphosphonate (e.g., DPD); mITT = Modified intent-to-treat. eGFR = Estimated glomerular filtration rate. ClinicalTrials.gov identifier: NCT03860935.
ATTRibute-CM: Baseline Demographic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Acoramidis (N=421)</th>
<th>Placebo (N=211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>77.4 (6.5)</td>
<td>77.1 (6.8)</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>384 (91.2)</td>
<td>186 (88.2)</td>
</tr>
<tr>
<td>ATTRwt-CM, n(%)</td>
<td>380 (90.3)</td>
<td>191 (90.5)</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL), median (IQR)</td>
<td>2326 (1332, 4019)</td>
<td>2306 (1128, 3754)</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m²), mean (SD)</td>
<td>60.9 (18.2)</td>
<td>61.0 (18.7)</td>
</tr>
<tr>
<td>TTR (mg/dL), mean (SD)</td>
<td>23.2 (5.6)</td>
<td>23.6 (6.1)</td>
</tr>
<tr>
<td>KCCQ-OS, mean (SD)</td>
<td>71.5 (19.4)</td>
<td>70.3 (20.5)</td>
</tr>
<tr>
<td>6MWD (m), mean (SD)</td>
<td>361.2 (103.7)</td>
<td>348.4 (93.6)</td>
</tr>
<tr>
<td>Concomitant tafamidis use, n (%)*</td>
<td>61 (14.5)</td>
<td>46 (21.8)</td>
</tr>
</tbody>
</table>

ATTRwt-CM = Transthyretin amyloidosis wild-type cardiomyopathy; NT-proBNP = N-terminal pro-B-type natriuretic peptide; IQR = interquartile range; TTR = transthyretin; KCCQ-OS = Kansas City cardiomyopathy questionnaire overall summary score.

*Tafamidis usage allowed after Month 12.
ATTRibute-CM: Primary Outcome Overall and by Subgroups

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Patients</th>
<th>Win Ratio [95% CI]</th>
<th>FS test P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>611(100.0)</td>
<td>1.772 [1.417, 2.217]</td>
<td><0.0001</td>
</tr>
<tr>
<td>ATTR-CM Genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTRm-CM</td>
<td>59(9.7)</td>
<td>2.529 [1.303, 4.911]</td>
<td>0.0061</td>
</tr>
<tr>
<td>ATTRwt-CM</td>
<td>552(90.3)</td>
<td>1.756 [1.396, 2.208]</td>
<td><0.0001</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 3000</td>
<td>401(65.6)</td>
<td>1.787 [1.373, 2.325]</td>
<td><0.0001</td>
</tr>
<tr>
<td>> 3000</td>
<td>210(34.4)</td>
<td>1.678 [1.160, 2.426]</td>
<td>0.0060</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 45</td>
<td>94(15.4)</td>
<td>1.410 [0.849, 2.341]</td>
<td>0.1841</td>
</tr>
<tr>
<td>>= 45</td>
<td>517(84.6)</td>
<td>1.797 [1.452, 2.226]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 78</td>
<td>299(48.9)</td>
<td>2.052 [1.489, 2.829]</td>
<td><0.0001</td>
</tr>
<tr>
<td>>= 78</td>
<td>312(51.1)</td>
<td>1.499 [1.098, 2.045]</td>
<td>0.0107</td>
</tr>
<tr>
<td>NYHA Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, II</td>
<td>512(83.8)</td>
<td>1.892 [1.479, 2.419]</td>
<td><0.0001</td>
</tr>
<tr>
<td>III</td>
<td>99(16.2)</td>
<td>1.150 [0.652, 2.030]</td>
<td>0.6292</td>
</tr>
</tbody>
</table>

FS = Finkelstein-Schoenfeld; CI = Confidence interval.

ESC Congress 2023
Amsterdam & Online

5
ATTRibute-CM: All-Cause Mortality

ARR = 6.4%
RRR = 25%

Separation observed at Month 19

ARR = Absolute risk reduction; RRR = Relative risk reduction.
All-cause mortality includes heart transplant, implantation of cardiac mechanical assist device, and all-cause death.
ATTRibute-CM: Cardiovascular-Related Mortality

CV-related: Cardiovascular-related.

1 Heart transplant and implantation of cardiac mechanical assistance device (CMAD) were treated as death for this analysis. N = 1 heart transplant & N = 1 CMAD implantation in placebo group.

2 CV-related mortality includes all adjudicated CV-related and undetermined cause of death.

ARR = 6.4%
RRR = 30%

CV-related mortality\(^1\,^2\) at Month 30

Acoramidis (N=409)

Placebo (N=202)

ESC Congress 2023
Amsterdam & Online
ATTRibute-CM: Frequency of CVH; P<0.0001 on overall analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Patients</th>
<th>Relative Risk [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>611(100.0)</td>
<td>0.496 [0.355, 0.695]</td>
</tr>
<tr>
<td>ATTR-CM Genotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTRm-CM</td>
<td>59(9.7)</td>
<td>0.377 [0.139, 1.027]</td>
</tr>
<tr>
<td>ATTRwt-CM</td>
<td>552(90.3)</td>
<td>0.514 [0.360, 0.734]</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 3000</td>
<td>401(65.6)</td>
<td>0.456 [0.299, 0.695]</td>
</tr>
<tr>
<td>> 3000</td>
<td>210(34.4)</td>
<td>0.576 [0.330, 1.003]</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 45</td>
<td>94(15.4)</td>
<td>0.594 [0.250, 1.415]</td>
</tr>
<tr>
<td>>= 45</td>
<td>517(84.6)</td>
<td>0.481 [0.334, 0.692]</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 78</td>
<td>299(48.9)</td>
<td>0.437 [0.275, 0.696]</td>
</tr>
<tr>
<td>>= 78</td>
<td>312(51.1)</td>
<td>0.576 [0.353, 0.940]</td>
</tr>
<tr>
<td>NYHA Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, II</td>
<td>512(83.8)</td>
<td>0.447 [0.310, 0.645]</td>
</tr>
<tr>
<td>III</td>
<td>99(16.2)</td>
<td>0.721 [0.313, 1.660]</td>
</tr>
</tbody>
</table>

Negative binomial regression with treatment group, stratification factors, and subgroup of interest was used to analyze the cumulative frequency of adjudicated CV-related hospitalization.
ATTRibute-CM: Change from Baseline in NT-proBNP & 6MWD

1Analyzed using mixed effects model with repeated measures. Missing measurements due to early discontinuation imputed using the Jump to Reference method. Missing measurements due to death performed by sampling with replacement from bottom 5% of observed values.

ESC Congress 2023
Amsterdam & Online
ATTRibute-CM: Change from Baseline in KCCQ-OS & Serum TTR

Change from Baseline in KCCQ-OS\(^1\)

Change from Baseline in Serum TTR\(^2\)

\(^{1}\)Analyzed using mixed effects model with repeated measures. Missing measurements due to early discontinuation imputed using the Jump to Reference method. Missing measurements due to death performed by sampling with replacement from bottom 5% of observed values.

\(^{2}\)Observed measurements without any imputation. No adjustment was made for early discontinuation for any reason, including death.
ATTRibute-CM: Improvements in Disease Measures

Improvement from baseline in NT-proBNP

- **Acoramidis** (N=280): 45%
- **Placebo** (N=133): 9%

Improvement from baseline in 6MWD

- **Acoramidis** (N=268): 40%
- **Placebo** (N=121): 22%

mITT population. Improvement is defined as <0 pg/mL change from baseline to month 30 for NT-proBNP; >0 meter change from baseline to month 30 for 6MWD. In both cases, among subjects with both baseline and month 30 values.
ATTRibute-CM: Patient Safety

Acoramidis was generally well-tolerated with no findings of potential clinical concern.

<table>
<thead>
<tr>
<th>Subjects with one or more event(s)</th>
<th>Acoramidis N=421</th>
<th>Placebo N=211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any treatment-emergent adverse events (TEAEs)</td>
<td>413 (98.1%)</td>
<td>206 (97.6%)</td>
</tr>
<tr>
<td>TEAE with fatal outcome</td>
<td>60 (14.3%)</td>
<td>36 (17.1%)</td>
</tr>
<tr>
<td>TEAE leading to hospitalization</td>
<td>212 (50.4%)</td>
<td>128 (60.7%)</td>
</tr>
<tr>
<td>TEAE leading to study drug discontinuation</td>
<td>39 (9.3%)</td>
<td>18 (8.5%)</td>
</tr>
<tr>
<td>Any treatment-emergent serious adverse events (SAEs)</td>
<td>230 (54.6%)</td>
<td>137 (64.9%)</td>
</tr>
<tr>
<td>Treatment-emergent SAEs leading to study drug discontinuation</td>
<td>21 (5.0%)</td>
<td>15 (7.1%)</td>
</tr>
<tr>
<td>Severe TEAEs1</td>
<td>157 (37.3%)</td>
<td>96 (45.5%)</td>
</tr>
</tbody>
</table>

All Adverse Events (AEs) occurring during the treatment period are considered treatment-emergent adverse events (TEAEs). Serious Adverse Event (SAE) meets seriousness criteria.

1Severity as assessed by the investigator.
ATTRibute-CM: Conclusions

• Primary endpoint analysis (Finkelstein-Schoenfeld hierarchy of ACM, CVH, NT-proBNP, 6MWD) highly statistically significant
 • Win ratio 1.8; p<0.0001; 58% of win ratio ties broken by ACM + CVH

• Consistent treatment effect across secondary endpoints
 • Better preservation of functional capacity (6MWD) and QoL (KCCQ-OS)
 • Reduced progressive increase in NT-proBNP; 45% of patients improved

• 81% survival rate on acoramidis approaches survival rate in age-matched US database (~85%)\(^1,2\)

• 0.29 mean annual CVH frequency on acoramidis approaches annual hospitalization rate observed in broader US Medicare population (~0.26)\(^3\)

• Reassuring safety profile

\(^1\)ssa.gov. \(^2\)Miller et al., Am J Card 2021 \(^3\)US Department of Health & Human Services, Jan 2018.
ATTRibute-CM: Acknowledgements

• Patients, caregivers
• Investigators, research staff
• Steering Committee, Data Monitoring Committee, Clinical Events Committee, Data Reporting Center
• Patient advocacy organizations
• BridgeBio scientists and supporting employees