DICTATE-AHF

Efficacy and Safety of Dapagliflozin in Acute Heart Failure NCT04298229

Zachary Cox, PharmD
Professor, Lipscomb University College of Pharmacy, USA
Department of Pharmacy, Vanderbilt University Medical Center
On behalf of DICTATE-AHF Investigators

August 28, 2023

Background

Two Goals for Acute Heart Failure

2) GDMT **Improve** 1) Decongestion Post-DC Outcomes **Optimization** Loop + No Improvement Acetazolamide Loop + No Improvement Thiazide Loop + **Improved Outcomes** SGLT2i

Background

- Concerns of early in-hospital SGLT2 inhibitor <u>SAFETY</u>:
 - Hypoglycemia
 - Ketoacidosis
 - Worsening renal function
 - Genitourinary infections
 - Questionable magnitude of diuretic and natriuretic benefit

Early addition of Dapagliflozin is a potential strategy to improve achievement of both primary AHF therapeutic goals, but **efficacy and safety** are unknown

DICTATE-AHF Design

 Investigator-initiated, multicenter, prospective, randomized, open-label study funded by AstraZeneca

Objective efficacy outcomes and blinded assessment of safety outcomes

- 240 Patients hospitalized with hypervolemic AHF randomized within 24 hours of presentation
 - Regardless of LVEF
 - Beginning April 2020, only patients with Type 2 diabetes mellitus were included
 - September 2021 protocol amended to include:
 - With or without type 2 diabetes mellitus
 - eGFR \geq 25 mL/min/1.73m²

Key Inclusion Criteria

- Age of 18 years or older
- Randomized within 24 hours of presentation hypervolemic AHF:
 - ≥2 objective measures of hypervolemia
- Planned or current use of IV loop diuretic therapy
- eGFR \geq 25 mL/min/1.73m²

Key Exclusion Criteria

- Type 1 diabetes
- Serum glucose < 80mg/dL
- Systolic blood pressure < 90mmHg
- IV inotropic therapy
- History of diabetic ketoacidosis
- Inability to perform standing weights or measure urine output accurately

DICTATE-AHF

Study Outcomes

Primary Outcome

```
Diuretic Efficiency = Cumulative weight change (kg)
Cumulative loop diuretic dose (mg)
```

- Calculated until Day-5 or hospital discharge if sooner
- Expressed as kg/40mg IV Furosemide equivalents
- Compared across treatment assignment using a proportional odds regression model adjusting for baseline weight

Study Outcomes

Secondary Outcomes adjudicated by blinded committee

- Incidence of worsening HF during hospital stay
- HF-related or diabetes-related 30-day readmissions

Safety Outcomes adjudicated by blinded committee

- Incidence of diabetic ketoacidosis
- Prolonged hospitalization for hypotension
- Prolonged hospitalization for hypoglycemia
- Change in eGFR from baseline to end-of-study

Select Exploratory Outcomes

- Measures of natriuresis and diuresis
- Hospital length of stay

Baseline Characteristics

Characteristic	Total Population (N=238)	Usual Care (N=119)	Dapagliflozin (N=119)
Age (yrs)	65 (56 – 73)	64 (55 – 74)	65 (56 – 73)
Male Sex	61%	56%	66%
White Race	68%	71%	66%
T2DM	71%	71%	71%
LVEF ≤ 40%	52%	55%	48%
SBP (mmHg)	121 (110 – 136)	120 (110 – 136)	121 (112 – 136)
eGFR (mL/min/1.73m ²)	53 (42 – 70)	54 (40 – 71)	51 (43 – 68)
IV furosemide dose prior to randomization (mg)	80 (40 – 140)	80 (80 – 120)	80 (40 - 160)

Primary Outcome

Adjusted Odds Ratio 0.65 (95% CI 0.41 – 1.01); P=0.06

Unadjusted Odds Ratio 0.64 (95% CI 0.41 – 1.00)

Primary Outcome Components

Heterogeneity of Treatment Effect

ESC Congress 2023 • Amsterdam & Online

Improved 24-Hour Natriuresis with Dapagliflozin

ESC Congress 2023 Amsterdam & Online

Improved 24-Hour Diuresis with Dapagliflozin

Faster Time to Oral Diuretic Transition and Discharge

ESC Congress 2023 Amsterdam & Online

Secondary Outcomes

Secondary Outcomes, N	Usual Care	Dapagliflozin
Worsening heart failure	3	4
30-day hospital readmission for ADHF	8	7
or diabetes-related reasons		
ADHF-related readmission	8	6
Diabetes-related readmission	0	1

Safety Outcomes and Adverse Events

Safety Outcomes	Usual Care	Dapagliflozin
Ketoacidosis	0	0
Symptomatic hypotension	4	2
Prolonged hospitalization for hypotension	1	1
Hypoglycemia	9	7
Prolonged hospitalization for hypoglycemia	0	0
Genitourinary tract infections	1	0
Change in eGFR (mL/min/1.73m ²)	-3.0 (-9 to 2)	-2.0 (-10 to 4)

Conclusions

- Dapagliflozin had a strong signal to improve diuretic efficiency supported by:
 - Increased natriuresis and diuresis per 40mg of IV furosemide
 - Decreased total dose and duration of loop diuretics required
 - Decreased time to hospital discharge
- Early dapagliflozin initiation was safe across all diabetic and cardiorenal outcomes

Totality of DICTATE-AHF data supports the early initiation of dapagliflozin in AHF to safely facilitate decongestion and GDMT optimization

DICTATE-AHF Study Team

Principal Investigator: JoAnn Lindenfeld

Co- PI: Zachary Cox

Co-Investigator: Sean Collins

Site Investigators:

Zachary Cox, Pharm.D. – Vanderbilt University
Gabriel Hernandez, M.D. – University of Mississippi
Kirkwood Adams, M.D. – University of North Carolina
A. Tom McRae, M.D. – Centennial Hospital
Mark Aaron, M.D. - St Thomas Hospital System
Luke Cunningham, M.D. – Integris Medical Center

Clinical Coordinating Center:

Sean Collins, Christy Kampe, Karen Miller

Data Coordinating Center:

Chris Lindsell, Frank Harrell, Cathy Jenkins

