

Outcomes of Patients With New LBBB After TAVR: Insights From the NCDR STS/ACC TVT Registry

Nickpreet Singh, MD MS

New York-Presbyterian/Weill Cornell Medical Center

STS/ACC TVT Registry™

The Society
of Thoracic
Surgeons

AMERICAN
COLLEGE of
CARDIOLOGY

Disclosures, Funding Support, and Disclaimer

I, Nickpreet Singh, DO NOT have any relevant financial relationships to disclose.

This research was supported by the American College of Cardiology Foundations National Cardiovascular Data Registry (NCDR) and The Society of Thoracic Surgeons National Database. The views expressed in this presentation represent those of the author(s), and do not necessarily represent the official views of either organization. Learn more about the STS/ACC TVT Registry at www.tvtregistry.org.

Faculty disclosure information can be found on the app.

STS/ACC TVT Registry™

The Society
of Thoracic
Surgeons

AMERICAN
COLLEGE of
CARDIOLOGY

Background

- Conduction disturbances (high degree AVB and LBBB) remain most frequent complication after TAVR
- Clinical implications for mortality unclear, with varying results depending on follow-up length, study size, and surgical risk
 - Meta-analysis suggests new LBBB associated with increased death and heart failure hospitalization at 1-year follow-up
- New LBBB associated with reduced recovery of LVEF and higher PPM implantation

Methods: Study Design

Design	Inclusion	Key Exclusion Criteria
<ul style="list-style-type: none">• DESIGN: Retrospective study of patients undergoing TAVR who develop new LBBB compared with those without new LBBB in TVT registry• OBJECTIVE: Examine the association between new LBBB without pacemaker requirement with all-cause mortality (and other outcomes) at 1 year after TAVR	<p>Patients in TVT registry undergoing elective TAVR:</p> <ul style="list-style-type: none">• For native AS• Between 1/1/2016 – 9/30/2022	<ul style="list-style-type: none">• Pacemaker or conduction defect prior to TAVR• Unsuccessful TAVR, emergency surgery, or death during index hospitalization• Anticipated life expectancy of less than 1 year

Methods: Outcomes

- *Primary:*
 - Mortality
- *Key Secondary:*
 - All-cause readmission
 - PPM/ICD implantation
 - KCCQ12
 - LVEF

All endpoints assessed at 1 year, unless otherwise noted

Statistical Methods

- All endpoints assessed using Cox-proportional hazards regression models accounting for within-site clustering
 - Models adjusted for clinical, laboratory, echocardiographic, and procedural factors as well as immediate post-procedure complications
- IPW used for 1-year outcomes to account for missingness
- KCCQ-12 analyses restricted to sites with > 50% data completeness; LVEF to those with > 70% completeness

Results: Study Consort Diagram

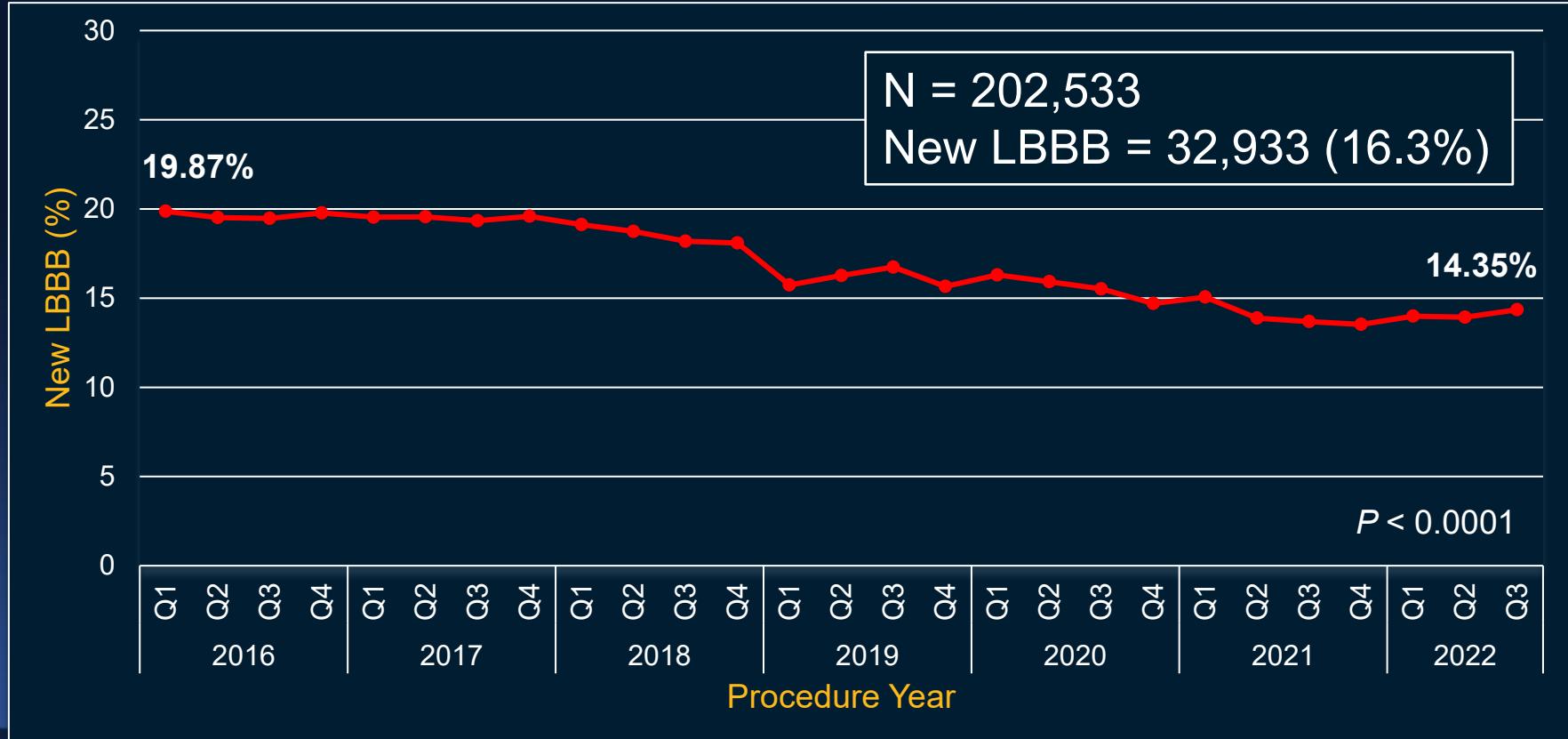
Stable patients undergoing elective TAVR for native AS (1/1/2016-9/30/22): N = 375,281

Excluded Pre-procedure

Conduction defect prior to procedure = 127,382

Pacemaker or ICD prior to TAVR = 5,209

Anticipated life expectancy of less than 1 year = 1,505

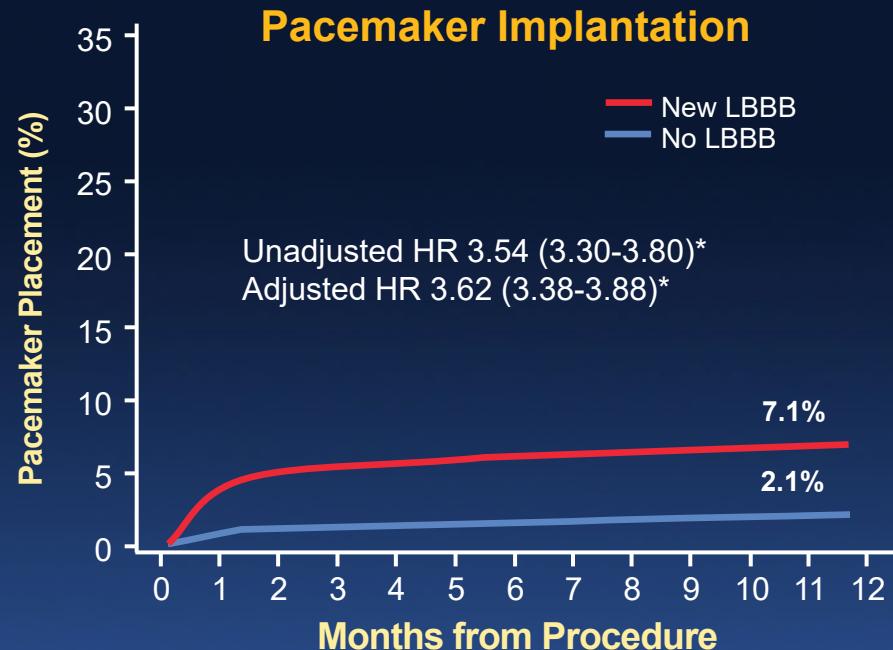
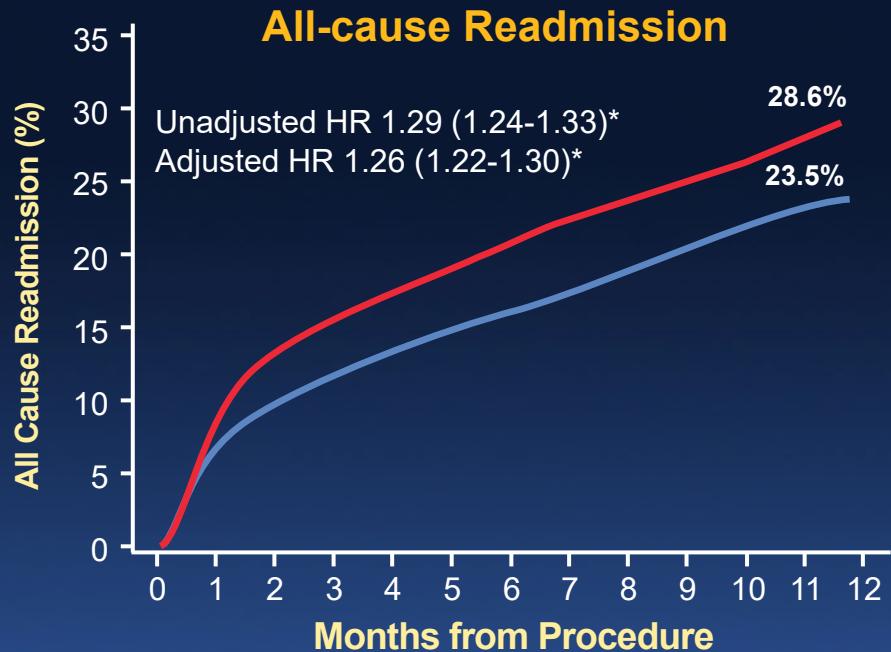

Excluded Post-procedure

- Pacemaker implantation during index hospitalization = 12,569
- Death during procedure or index hospitalization = 2,280
- Unsuccessful TAVR = 1,538
- Conversion to open heart surgery = 487
- Missing post-procedure ECG or data on LBBB = 21,778

N = 202,533, Sites = 806

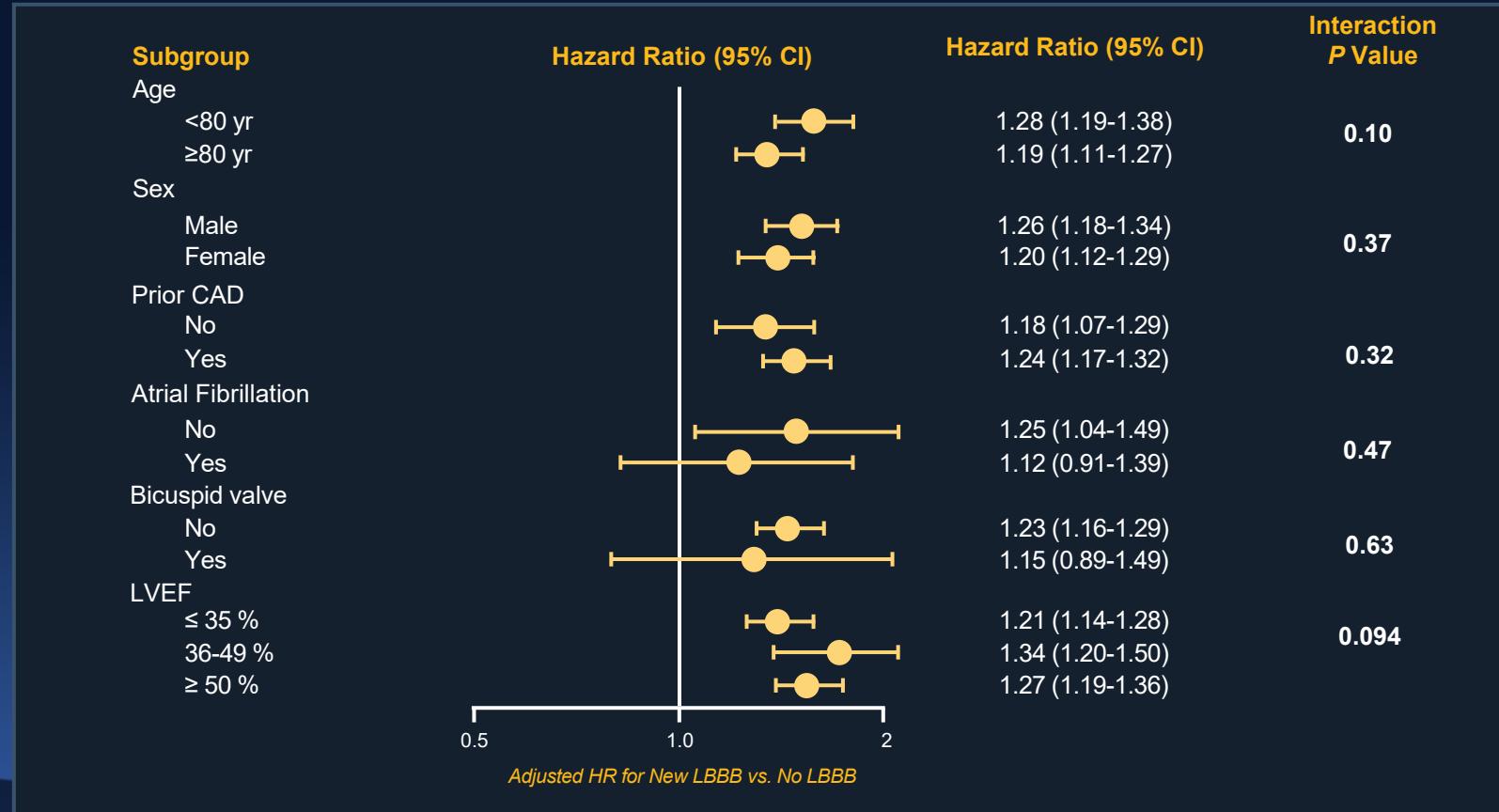
1-year event eligible: N = 156,350

Results: Rates of New LBBB Over Time



Results: Selected Baseline Characteristics and Complications

Variable	New LBBB, N = 32,933	No LBBB, N = 169,600	Std Diff Score
Age	78.4 ± 8.5	78.5 ± 8.5	0.01
Female sex	52.1%	48.0%	0.08
LVEF category			0.02
≥ 50%	86.3%	85.7%	
36-49%	6.0%	6.0%	
≤ 35%	7.9%	8.3%	
Bicuspid valve	5.5%	5.5%	0.04
Baseline KCCQ-12 score	51.8 ± 24.8	51.6 ± 25.0	0.01
Site-assigned surgical risk			0.08
High	42.5%	39.2%	
Intermediate	38.3%	38.9%	
Low	18.9%	21.5%	
In-hospital stroke	1.7%	1.3%	0.03
VARC-3 in-hospital bleeding			0.06
Type 2 (major)	3.0%	2.4%	
Type 3 (life-threatening)	1.3%	1.0%	

Results: Primary Outcome (All-Cause Mortality)



Results: Key Secondary Outcomes

* P<0.0001 for all hazard ratios

Results: Subgroup Analyses of Primary Outcome

Results: Additional Secondary Outcomes

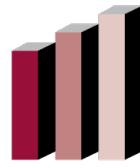
Outcome	Adj. Coefficient (95% CI)	Adj. P Value
Δ LVEF (%)	-2.8 (-3.4 to -2.3)	< 0.001
Δ KCCQ-12	-1.8 (-2.2 to -1.3)	< 0.001
Length of hospital stay (days)	+0.41 (0.33 to 0.50)	< 0.001

Limitations

- Missingness of 1-year outcomes: mortality (18.2%), readmission (16.8%), PPM implantation (17.9%), KCCQ-12 (21.6%), and LVEF (14.2%)
 - Addressed using IPW
- Lack of outcomes data beyond 1 year
- Inability to adjust for unmeasured confounding factors, such as frailty

Summary and Clinical Implications

1. The incidence of new LBBB after TAVR has decreased over the past 5 years in the US
2. Development of new LBBB after TAVR is associated with adverse clinical outcomes at 1-year, including more frequent death and re-hospitalization and less improvement in LVEF and quality of life
3. These findings emphasize the importance of procedural strategies to minimize the development of LBBB
4. Future studies should evaluate the role of surveillance and device therapies (e.g, resynchronization/left bundle branch pacing) for patients who develop new LBBB after TAVR


Acknowledgments and Co-Authors

- **Tamim Nazif**
- **David J Cohen**
- Martin B. Leon
- Ajay J. Kirtane
- Shmuel Chen
- **Miloni A. Shah**
- Amanda Stebbins
- Andrzej S. Kosinski
- Leo Brothers
- **Sreekanth Vemulapalli**

NCDR®
NATIONAL CARDIOVASCULAR DATA REGISTRY

STS/ACC TVT Registry™

 STS
National Database™
Using data to drive quality

**The Society
of Thoracic
Surgeons**

**AMERICAN
COLLEGE of
CARDIOLOGY**