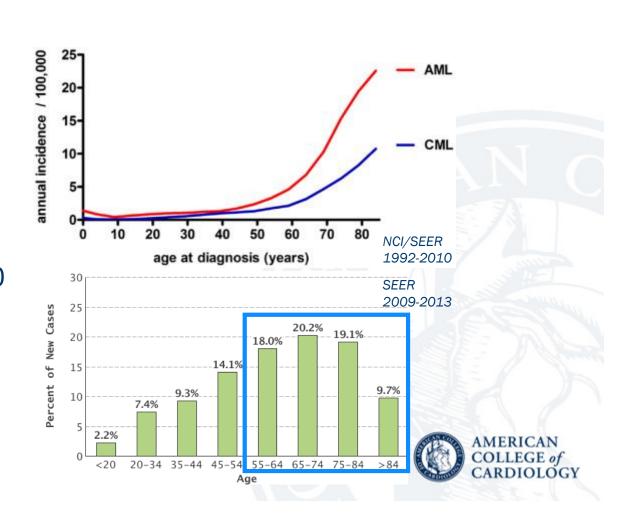
CML and Tyrosine Kinase Inhibitors – What are the Cardiovascular Toxicities? Should Everyone Get an Ankle Brachial Index (ABI) Before Starting?

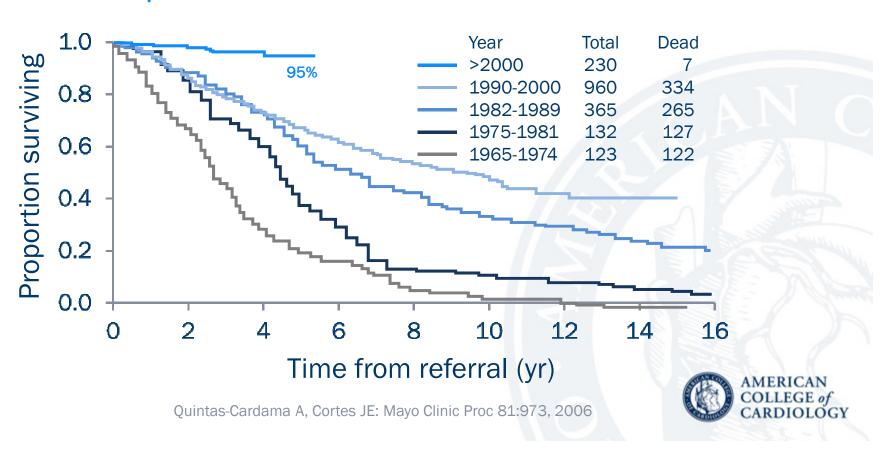
Joerg Herrmann, M.D.

DISCLOSURE

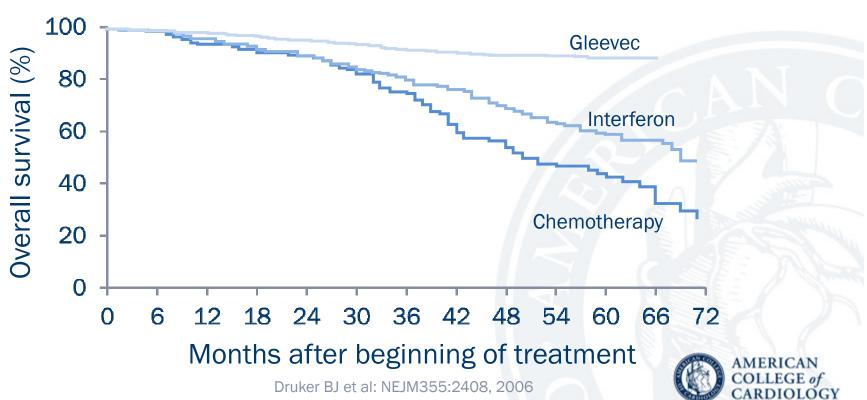
Relevant Financial Relationship(s)


ARIAD Pharmaceuticals, Advisory Board Bristol-Myers-Squibb, Advisory Board Amgen, Advisory Board

Off Label Usage
None

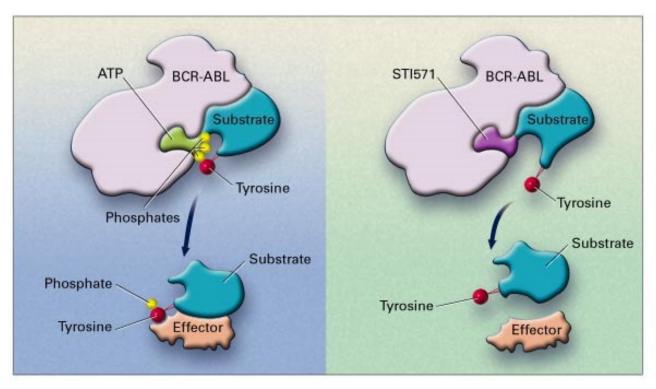

CML Facts

- CML accounts for approx. 15-20% of adult leukemias
- annual incidence of1 to 2 cases per 100,000
- median age at presentation 64 years
- 2/3 are 55 and older



CML Prognosis

Survival Improvement Over Time


CML Survival Improvement Success of Advances in Chemotherapies

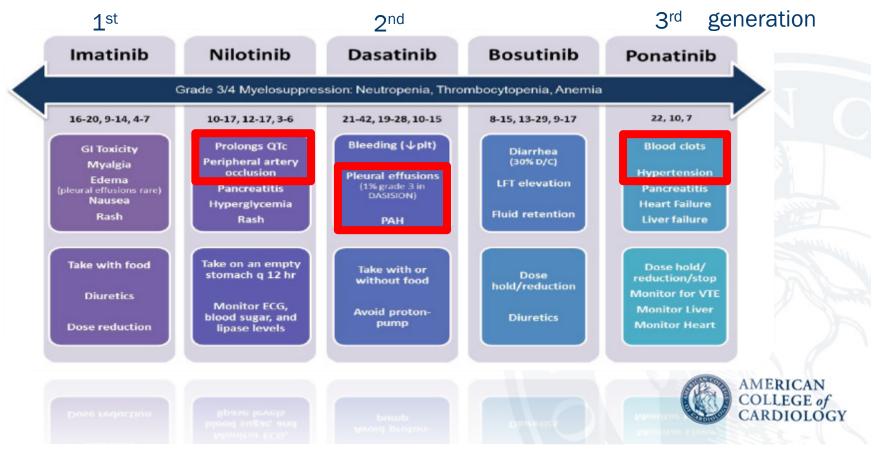
Italian Cooperative Study Group: NEJM 330:820, 1994

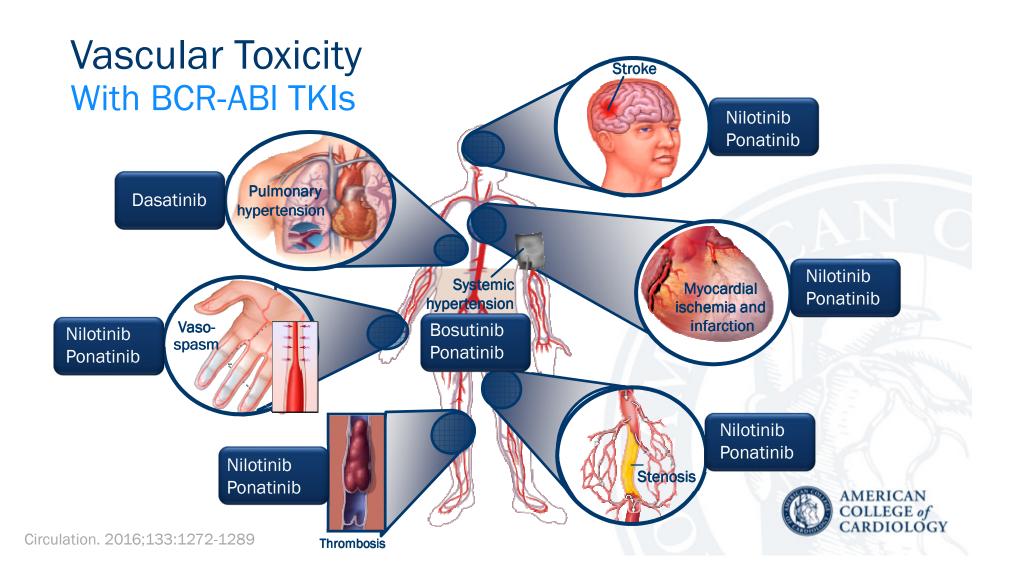
Bcr-Abl TKIs

The Epitome of the Success of Targeted Therapies

Faderl S et al. N Engl J Med 1999;341:164-72 Goldman JM, Melo JV. N Engl J Med 2001;344:1084-6 Same venue for

Ph+
Acute
Lymphoblastic
Leukemia


Success of Bcr-Abl-directed Therapies


CML as a Chronic, Non-Fatal Disease

Bcr-Abl TKIs

Generations

Annals of Internal Medicine

ORIGINAL RESEARCH

Cardiovascular Events Associated With Use of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia

A Population-Based Cohort Study

Torsten Dahlen, MD. Gustaf Edgren, MD. PhD: Mats Lambo, MD. PhD: Martin Heghard, MD. PhD: Magnes Bjorkholm, MD. PhD: Fredrik Sandin, MSc. Andlers Splanelov, MD. PhD: Johan Bisther, MD. PhD: Will Olsson-Stromberg, MD. PhD: Lotta Ohis, MD. PhD: Magnes BCs. MM. PhD: and Left Storelow, MD. PhD: and Left Storelow, MD. PhD: on boladf of the Swedish CM. Group and the Swedish CM. Spiester Group?

Background: Tyrosine kinsse inhibitors (TKIs) have increased survival dramatically for patients with chronic myeloid leukemia (CML), but continuous administration of these drugs may elicit

ative risks of 1.5 (95% CI, 1.1 to 2.1) and 2.0 (CI, 1.2 to 3.3), respectively. The event rate for myocardial infanction was higher in patients treated with nilotinib or desatinib (29 and 19 per 1000

Variable Ev n	Imatinib ($n = 711$)		Nilotinib ($n = 181$)			Dasatinib ($n = 175$)			
	Events, n	Exposure Time, y	Incidence Rate per 1000 Person-Years (95% CI)	Events,	Exposure Time, y	Incidence Rate per 1000 Person-Years (95% CI)	Events,	Exposure Time, y	Incidence Rate per 1000 Person-Years (95% CI)
All arterial thromboembolic events	31	2405	13 (7-16)	5	170	29 (6-60)	5	262	19 (4-39)
Myocardial infarction	21	2477	8 (4-10)	5	172	29 (6-58)	5	269	19 (4-37)
Cerebrovascular ischemia	9	2503	4 (1-5)	2	175	11 (0-30)	1	276	4 (0-12)
Other arterial thrombosis	3	2545	1 (0-3)	1	176	6 (0-16)	0	282	0 (-)
All venous thromboembolic events	14	2497	6 (2-8)	2	175	11 (0-31)	0	277	0 (-)
Pulmonary embolism	6	2547	2 (0-4)	1	177	6 (0-18)	0	283	0 (-)
Deep venous thrombosis	8	2519	3 (1-6)	1	175	6 (0-20)	0	277	0 (-)
All arterial and venous events	38	2350	16 (11-21)	7	167	42 (15-80)	5	256	20 (4-40)

deeper molecular response, as measured by quantitative real-time reverse transcription polymerase chain reaction assay of BCR-ABL1 mRNA; however, long-term follow-up of randomized, controlled trials showed no demonstrable increase in patient survival (4-6). Despite the need for continual oral administration, TKIs are well-tolerated by most patients with CML, and serious toxic events are rare. However, the superiority of

www.annais.org

primarily on highly selected patients in clinical trials and on individual case reports, translate into a clinically important increased risk for cardiovascular disease in a broad population of patients with CML treated with TKs. We therefore analyzed the risk for arterial and venous vascular events in a large population-based cohort of patients with CML treated with first- or secondgeneration TKIs.

Armale of Insornal Modumo

CML = chronic myelogenous leukemia.
* Patients with events before CML diagnosis were excluded.

Annals of Internal Medicine

ORIGINAL RESEARCH

Cardiovascular Events Associated With Use of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia

A Population-Based Cohort Study

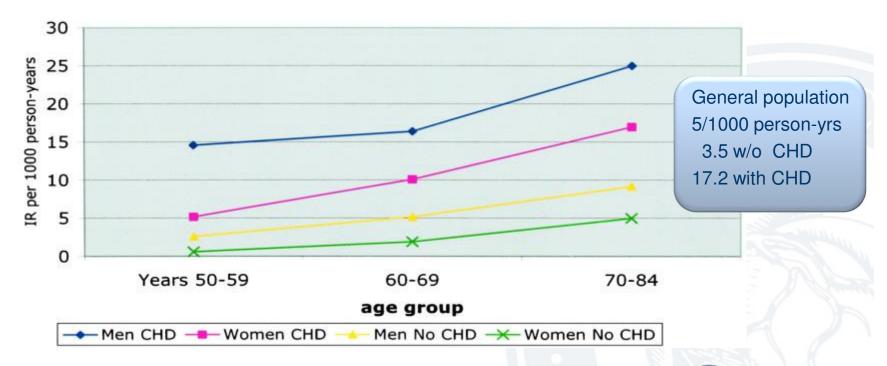
Torsten Dahlen, MD. Gustaf Edgren, MD. PhD: Mats Lambo, MD. PhD: Martin Heghard, MD. PhD: Magnes Bjorkholm, MD. PhD: Fredrik Sandin, MSc. Andlers Splanelov, MD. PhD: Johan Bisther, MD. PhD: Will Olsson-Stromberg, MD. PhD: Lotta Ohis, MD. PhD: Magnes BCs. MM. PhD: and Left Storelow, MD. PhD: and Left Storelow, MD. PhD: on boladf of the Swedish CM. Group and the Swedish CM. Spiester Group?

Background: Tyrosine kinsse inhibitors (TKIs) have increased survival dramatically for patients with chronic myeloid leukemia (CML), but continuous administration of these drugs may elicit ative risks of 1.5 (95% CI, 1.1 to 2.1) and 2.0 (CI, 1.2 to 3.3), respectively. The event rate for myocardial infanction was higher in patients treated with nilotinib or desatinib (29 and 19 per 1000

Variable	Imatinib ($n = 711$)		Nilotinib ($n = 181$)			Dasatinib ($n = 175$)			
	Events,	Exposure Time, y	Incidence Rate per 1000 Person-Years (95% CI)	Events,	Exposure Time, y	Incidence Rate per 1000 Person-Years (95% CI)	Events,	Exposure Time, y	Incidence Rate per 1000 Person-Years (95% CI)
All arterial thromboembolic events	Vio		13 (7-16)	5	170	29 (6-60)	5	262	19 (4-39)
Myocardial infarction	12	.3	8 (4-10)	5	172	29 (6-58)	5	269	19 (4-37)
Cerebrovascular ischemia	8.	.1	4 (1-5)	2	175	11 (0-30)	1	276	4 (0-12)
Other arterial thrombosis	3	2343	1 (0-3)	1	176	6 (0-16)	0	282	0 (-)
All venous thromboembolic events	14	2497	6 (2-8)	2	175	11 (0-31)	0	277	0 (-)
Pulmonary embolism	6	2547	2 (0-4)	1	177	6 (0-18)	0	283	0 (-)
Deep venous thrombosis	8	2519	3 (1-6)	1	175	6 (0-20)	0	277	0 (-)
All arterial and venous events	38	2350	16 (11-21)	7	167	42 (15-80)	5	256	20 (4-40)

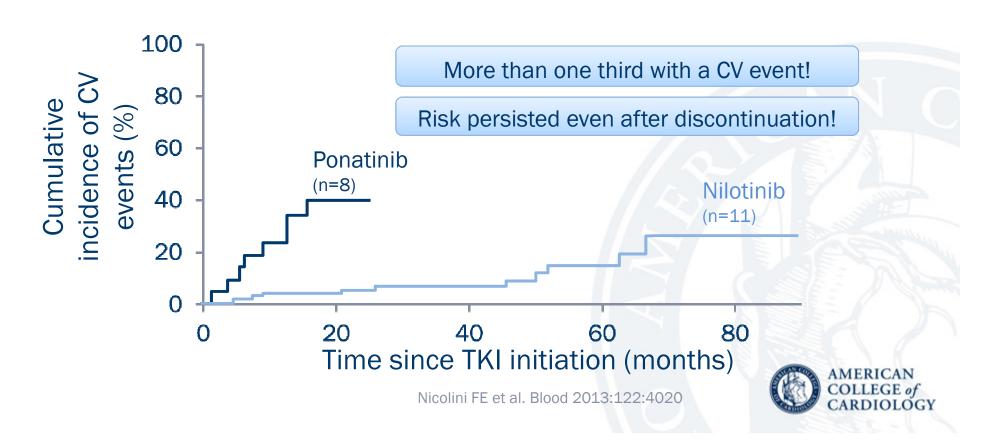
Abraham NS et al. Aliment Phermacol Ther 2007;25:913-24

deeper molecular response, as measured by quantitative real-time reverse transcription polymerase chain reaction assay of BCR-ABL1 mRNA; however, long-term follow-up of randomized, controlled trials showed no demonstrable increase in patient survival (4-6). Despite the need for continual oral administration, TKIs are well-tolerated by most patients with CML, and serious toxic events are rare. However, the superiority of


www.annais.org

primarily on highly selected patients in clinical trials and on individual case reports, translate into a clinically important increased risk for cardiovascular disease in a broad population of patients with CML treated with TKIs. We therefore analyzed the risk for arterial and venous vascular events in a large population-based cohort of patients with CML treated with first- or secondgeneration TKIs.

CML = chronic myelogenous leukemia.
* Patients with events before CML diagnosis were excluded.


Risk of MI with NSAIDs

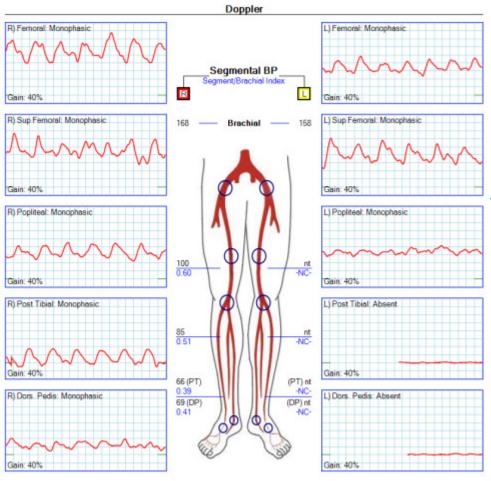
Cardiovascular Events in CML Patients

Ponatinib vs. Nilotinib

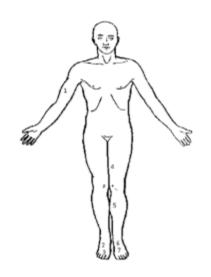
Vascular Toxicity with Cancer Therapy Learning Objectives

- To review the spectrum of cardiovascular toxicity with Bcr-Abl Tyrosine Kinase Inhibitor (TKI) therapy for Philadelphia chromosome-positive leukemias
- To evaluate risk prediction approaches
- To formulate risk surveillance and mitigation strategies

Case #1 32 year-old female


- Ph+ acute lymphoblastic leukemia
- initially 4 cycles of dasatinib and hyper-CVAD
- rising BCR-ABL transcripts, started ponatinib Feb. 2013, initially at 30 mg, then at 45 mg per day
- excellent cytogenetic and molecular response

Case #1 32 year-old female


- matched unrelated donor allo-HSCT in July 2013
- acute then chronic GVHD, started on sirolimus and prednisone in January 2015
- bluish discoloration of the left lower extremity end
 of March 2015

Case #1
Doppler Pulse Wave
And
Ankle/Brachial Index

Case #1 Transcutaneous Oximetry

*RPI = Regional Perfusion Index (e.g., 2/1, 3/1, etc), TcPO2's measured in mmHg

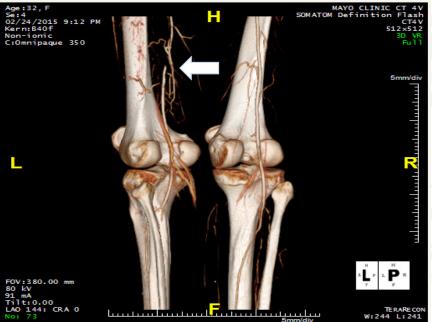
Electrode Temperature 45.0°C

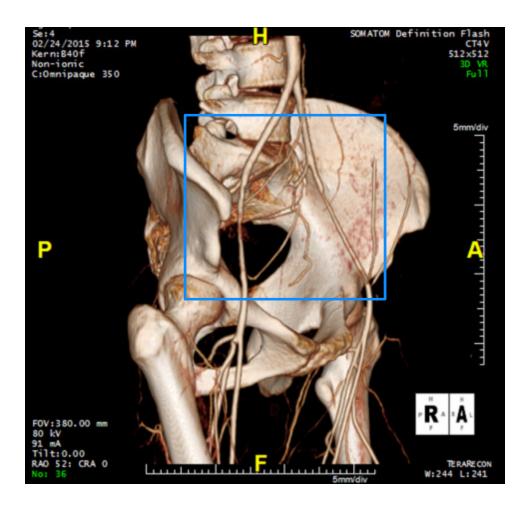
	Supine	RPI*
1	88	3
2	51	0.58
3	35	0.40
4	47	0.53
5	21	0.24
6	3	0.03
7	2	0.02

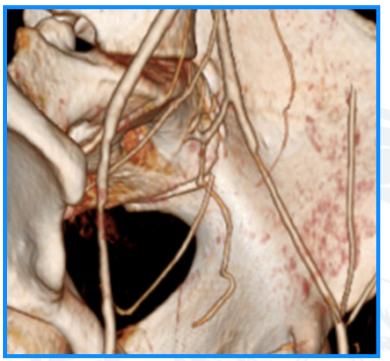
Legs Elevated 3 Minutes

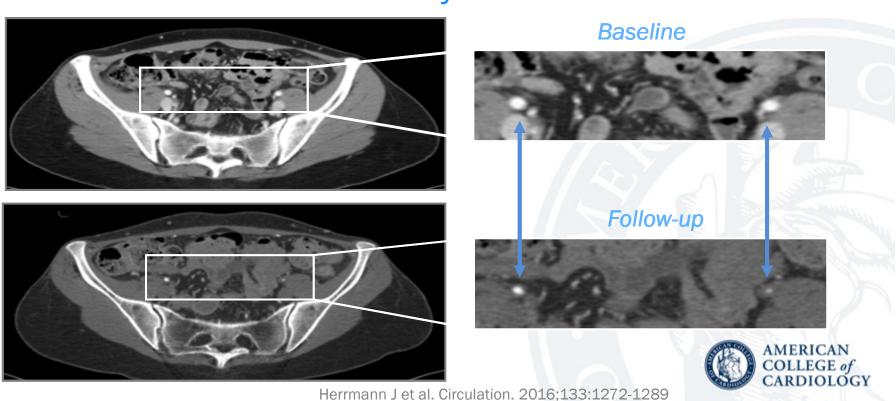
	Elevated	RPI*
1		4

Dependent 10 Minutes

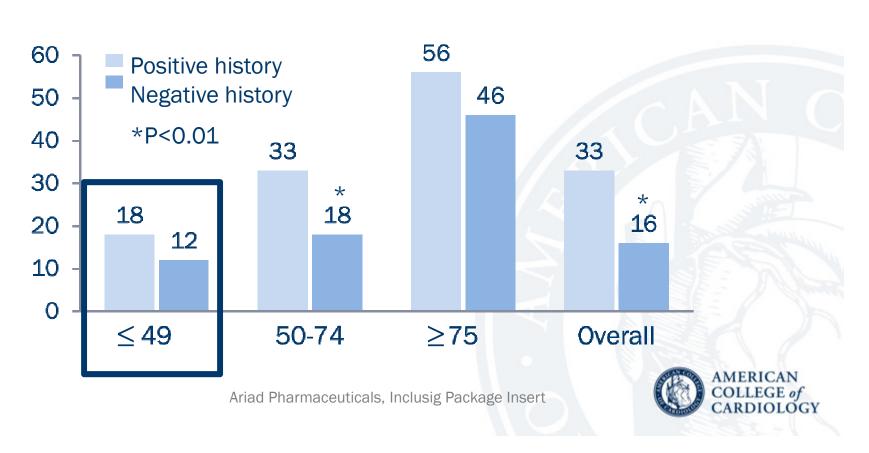

	Dependent	RPI*
1	81	3
2	71	0.88
3	67	0.83
4	60	0.74
5	61	0.75
6	43	0.53
7	31	0.38


Case #1


Critical Limb Ischemia - SFA occlusion



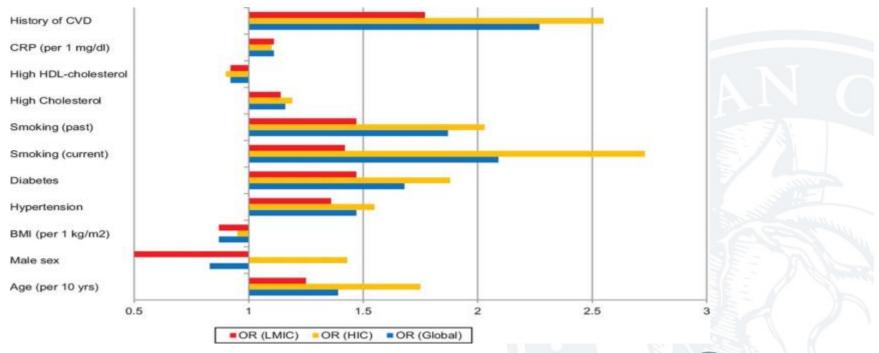
Case #1 Bilateral External Iliac Artery Stenosis



Case #1 What would have been helpful in this case?

- A. Baseline CV risk factor assessment (Framingham)
- B. Baseline physical including peripheral pulses
- C. Baseline ankle-brachial index
- D. Baseline lower extremity Doppler flow evaluation
- E. Baseline TcPO2

Risk of Cardiovascular Events With Ponatinib Stratification by History of IHD, DM, HTN, HLP

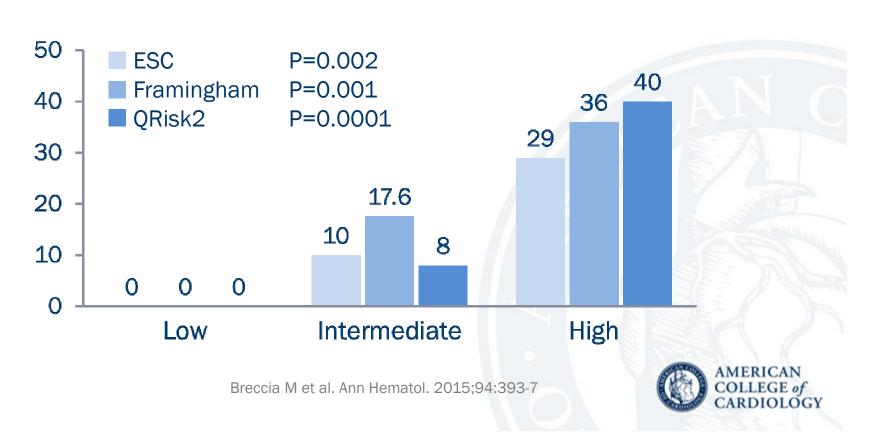

Relative Risk of Arterial Thrombotic Events With Ponatinib

Risk Category	Arterial SAE Rate in PACE Patients With Risk Category (%)	Arterial SAE Rate in PACE Patients, Excluding Patients With Risk Category (%)	Relative Risk (95% CI)
Age ≥ 65 years	19	11	1.8 (1.2 to 2.9)
History of ischemic cardiac disease	26	10	2.6 (1.6 to 4.0)
Diabetes mellitus	26	11	2.4 (1.5 to 3.8)
Arterial hypertension	20	6	3.2 (1.8 to 5.8)
Hypercholesterolemia	17	10	1.6 (1.0 to 2.7)
No. of cardiac risk factors + history of ischemic disease			
0	6	15	0.4 (0.1 to 1.0)
1	8	15	0.6 (0.3 to 1.1)
≥ 2	18	7	2.5 (1.4 to 4.5)

SAE: 25% at 1.3 years, 50% at 2.7 years (PACE and pre-PACE trial)

Risk Factors for Peripheral Arterial Disease

Criqui M.H., Aboyans V. Circ Res. 2015;116:1509-1526



Case #1 32 year-old female

- FRS 0.2%
- BP 150/90 on Lisinopril 10-20 mg per day
- TC 247, HDL 104, LDL 84, TG 295 mg/dL

Risk of Cardiovascular Events With Nilotinib Stratification by CV Risk Scores

Contents lists available at ScienceDirect

Critical Reviews in Oncology/Hematology

journal homepage: www.elsevier.com/locate/critrevon

Basal assessment

Physical examination

Complete physical evaluation should include:

- Blood pressure
- Heart rate
- Peripheral pulse
- BMI (weight and height)

Blood test panel

Blood count, urea, creatinine, uric acid, sodium, potassium, calcium, magnesium, TSH, glucose, HbA_{1C}*, LDL and HDL cholesterol, triglycerides, VES, CRP, fibrinogen, INR

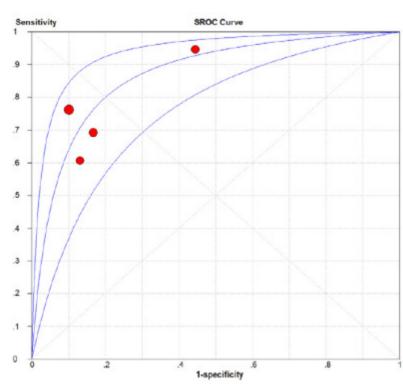
Medical history

- Previous hemato-oncological disease
- Previous cardiotoxicity due to hematooncological treatment
- Respiratory disease
- Ongoing medication

Cardiovascular examination

- ECG with QT and QTcF evaluation
- Echocardiography
- Edinburgh Claudication Questionnaire
- Vascular evaluation *.**.***

*Asymptomatic patients with peripheral pulses and no risk factors may be scheduled for 12 months follow up. **Asymptomatic patients with risk factors or absence of a peripheral pulse should be evaluated by vascular specialist with ankle-brachial index (ABI) [15]. If ABI ≥0.9 a 12 months follow-up should be sufficient, while in patients with ABI <0.9 other tests are mandatory, such as lower limbs and carotid ultrasound and a 6 months follow-up. **Anyway, measurement of carotid intima-media thickness and/or screening for atherosclerotic disease by carotid artery ultrasound should be considered in asymptomatic adults at moderate risk [13].*****Symptomatic patient for *claudicatio intermittens* should be evaluated by vascular specialist with ABI and their follow-up with echocolor-doppler can be scheduled on 3 or 6 months with ABI <0.7 for cut off.


History and Physical Examination for PAD

Symptoms/findings	Prevalence	Sensitivity	Specificity	Predictive value +	Predictive value
Rose claud.	1.9	9.2	99.0	54.5	89.5
Rose or poss. claud.	5.9	20.0	95.9	38.2	90.4
Femoral bruit	6.0	20.0	95.7	36.7	90.7
Abn. femoral pulse	3.0	12.7	98.2	46.7	90.1
Abn. post. tibial pulse	15.1	71.2	91.3	48.7	96.5
Abn. dorsalis pedis pulse	29.3	50.0	73.1	17.7	92.7
Any abn. pulse ^A	20.1	76.9	86.4	39.6	97.0
Rose or any abn. pulse	21.3	78.2	85.6	39.8	97.0
Rose or poss. or any abn. pulse	24.1	82.1	83.1	37.4	97.4
Rose and any abn. pulse	0.9	4.8	99.6	60.0	89.8
Rose or poss. and any abn. pulse	2.2	11.5	98.8	53.8	90.5

[^]Dorsalis pedis abnormalities excluded.

Diagnostic Performance of ABI for PAD (>50% stenosis)

Pooled sensitivity 0.75 (0.71-0.79)

Pooled specificity 0.86 (0.83-0.90)

Pooled positive LR 4.18 (2.14-8.14)

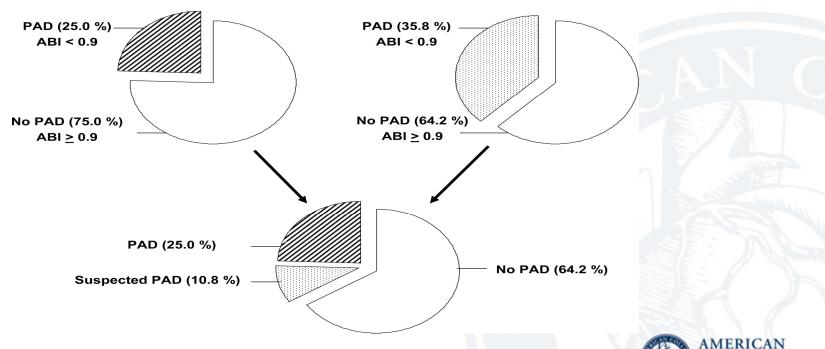
Pooled negative LR 0.29 (0.18-0.47)

Standard deviation of difference between 2 separate measures: 0.08

Variability 10%

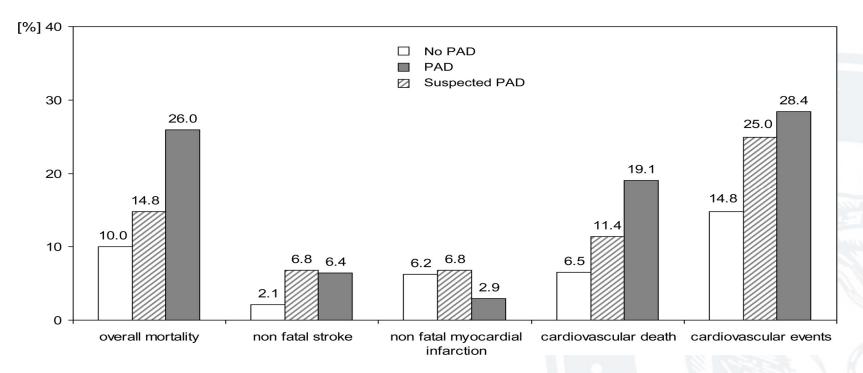
Xu D et al. Can J Cardiol 2013;29:492-8 Van Langen H et al. Vasc Med 2009;14:221-6

Correlation ABI and Extent of PAD

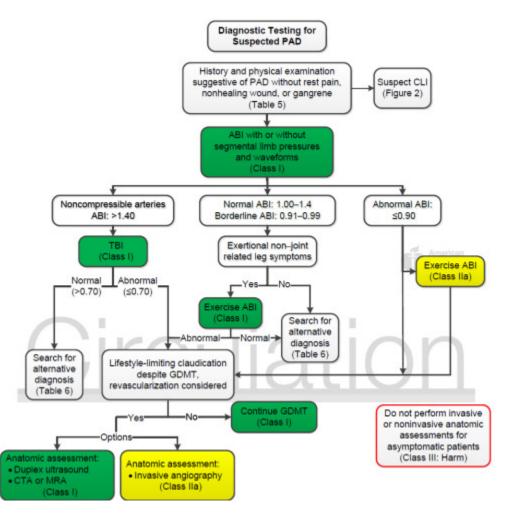

Clinical status	ABI	TBI or Toe systolic pressure
Normal	0.9-1.2	0.8-0.9
Mild	0.8-0.9	60 – 80 mmHg
Moderate-severe	0.4-0.8	40 – 60 mmHg
Resting ischemia	<0.4	<0.15 or <30 mmHg
Tissue loss	<0.5	40 mmHg
Threatened limb	<0.15	0
Medial calcification	>1.3	Commonly unaffected

Higher vs. Lower Ankle Blood Pressure for ABI

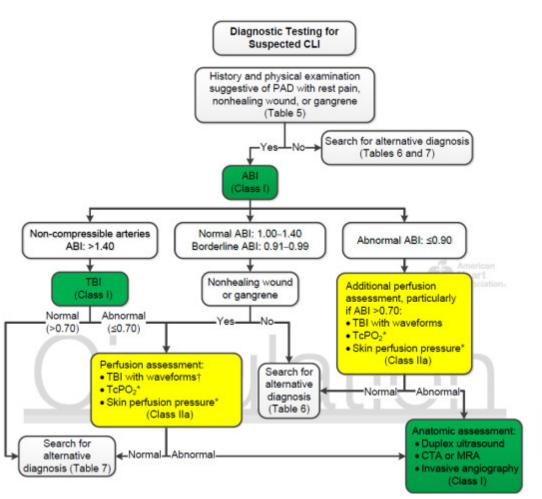
Current ABI definition


Modified ABI definition

Christine Espinola-Klein et al. Circulation. 2008;118:961-967



Lower Ankle ABI and Outcomes


Christine Espinola-Klein et al. Circulation. 2008;118:961-967

Gerhard-Herman MD et al. 2016 AHA/ACC Lower Extremity PAD Guideline

Gerhard-Herman MD et al. 2016 AHA/ACC Lower Extremity PAD Guideline

Case #1 Would you recommend any follow-up evaluation?

- A. No
- B. Follow-up physical every 3-6 months
- C. Follow-up physical every 12 months
- D. Follow-up ABI every 3-6 months
- E. Follow-up ABI every 12 months

Provisional Follow-Up Recommendations

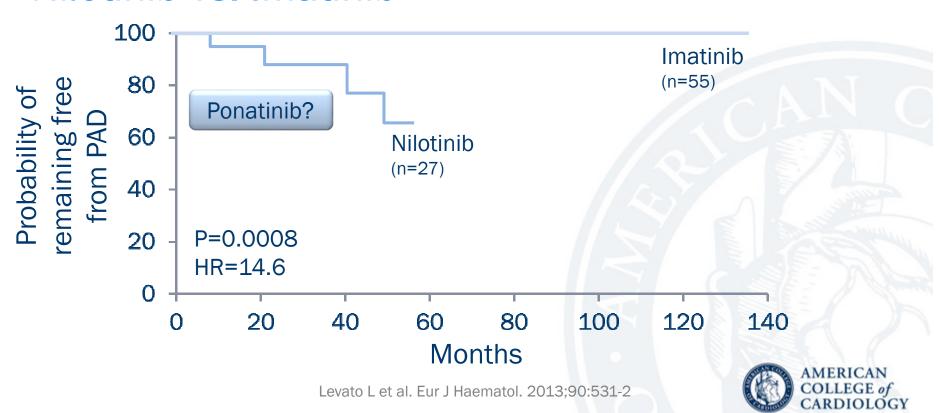
Assessment		Imatinib	Nilotinib	Dasatinib	Bosutinib	Ponatinit
Baseline	F	ollow good clinical practic	ce			77.072.00
Clinical cardiovascular asse	essment, including blood pressure		REC	REC	REC	REC
Fasting glucose			REC	ACI	ACI	REC
Fasting lipid pa						REC
Echocardiogra						ACI
ECG						ACI
Ankle-brachial	AA/I () ()		1.00			REC
-month follow-u	What is the	expected	a timei	ıne		
Clinical cardiov						REC
Blood pressure	and pace	of progr	occion'	2		REC
3- to 6-month fo	and pace	or brogre	C221011	•		222
Clinical cardiov						REC
Blood pressure						REC
Fasting glucos						ACI
Fasting lipid pane.			4.01	1.01	1.01	REC
Echocardiogram			ACI	ACI*	ACI	ACI
ECG			ACIT	ACI	ACI	ACI
Ankle-brachial index			REC	ACI	ACI	REC

NOTE. Practice guidelines regarding prevention of cardiovascular toxicity should be followed, including tobacco cessation counseling. In symptomatic patients or those with high cardiovascular risk, consider referral to cardiologist.

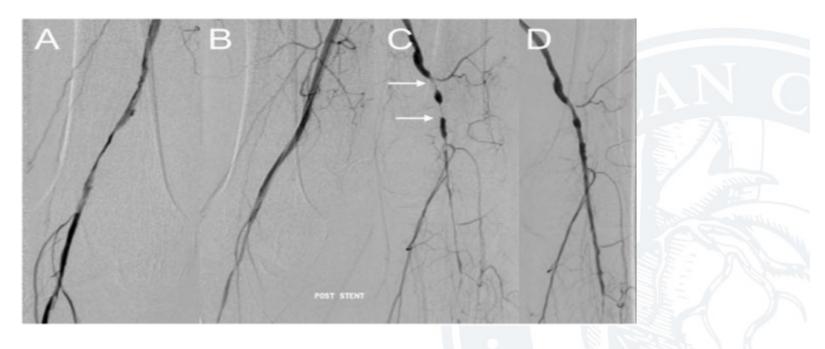
Abbreviations: ACI, as clinically indicated; ECG, electrocardiogram; REC, recommended; TKI, tyrosine kinase inhibitor.

*Low threshold for an echocardiogram in patient considered for treatment or being treated with dasatinib who has cardiopulmonary symptoms. †ECG prior to starting, after 7 days after starting, and after each dose change (package insert).

Average Time to PAD Onset on Nilotinib



Bondon-Guitton E et al.: Targ Oncol 11:549, 2016



Clinical PAD

Nilotinib vs. Imatinib

Diffuse Progressive ASCVD with Nilotinib Peripheral Arterial Disease

Provisional Follow-Up Recommendations

	Assessment	Imatinib	Nilotinib	Dasatinib	Bosutinib	Ponatinit		
Baseline Clinical cardiovascula Fasting glucose	r assessment, including blood pressure	Follow good clinical practic	REC REC	REC ACI	REC ACI	REC REC		
Fasting lipid pa Echocardiogra ECG Ankle-brachial	What is the time frame to detection -					ACI ACI REC		
1-month follow-u Clinical cardiov Blood pressure 3- to 6-month fo	3 months or 6 months every year, or only in the 1 st year,					REC REC		
Clinical cardiov Blood pressur Fasting glucos Fasting lipid pages	dependent on vary type of TKI?					REC REC ACI REC		
Echocardiogram ECG			ACI ACI†	ACI*	ACI ACI	ACI ACI		
Ankle-brachial index			REC	ACI	ACI	REC		

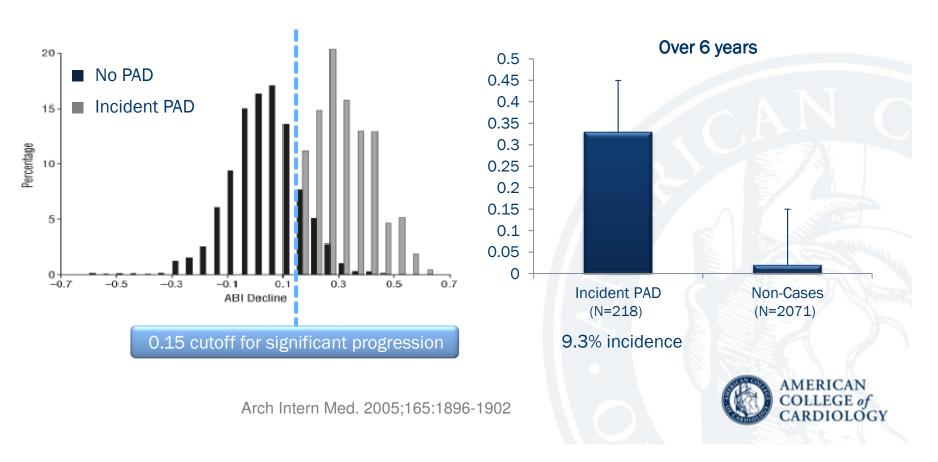
NOTE. Practice guidelines regarding prevention of cardiovascular toxicity should be followed, including tobacco cessation counseling. In symptomatic patients or those with high cardiovascular risk, consider referral to cardiologist.

Abbreviations: ACI, as clinically indicated; ECG, electrocardiogram; REC, recommended; TKI, tyrosine kinase inhibitor.

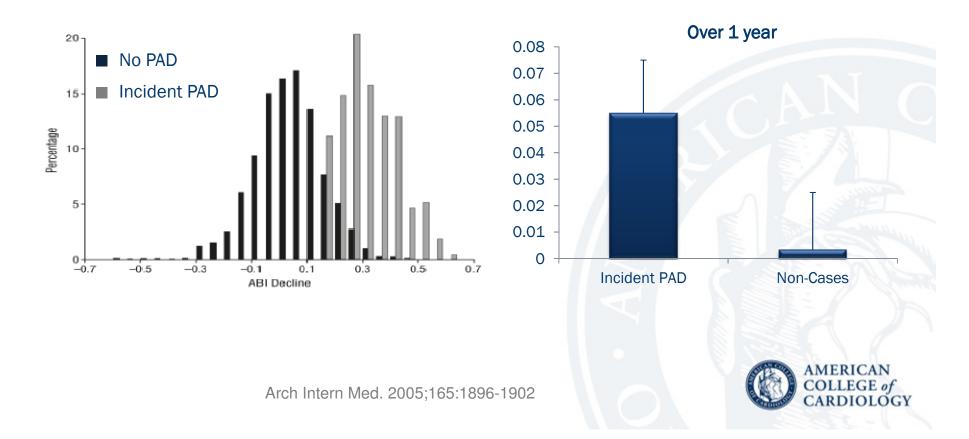
^{*}Low threshold for an echocardiogram in patient considered for treatment or being treated with dasatinib who has cardiopulmonary symptoms. †ECG prior to starting, after 7 days after starting, and after each dose change (package insert).

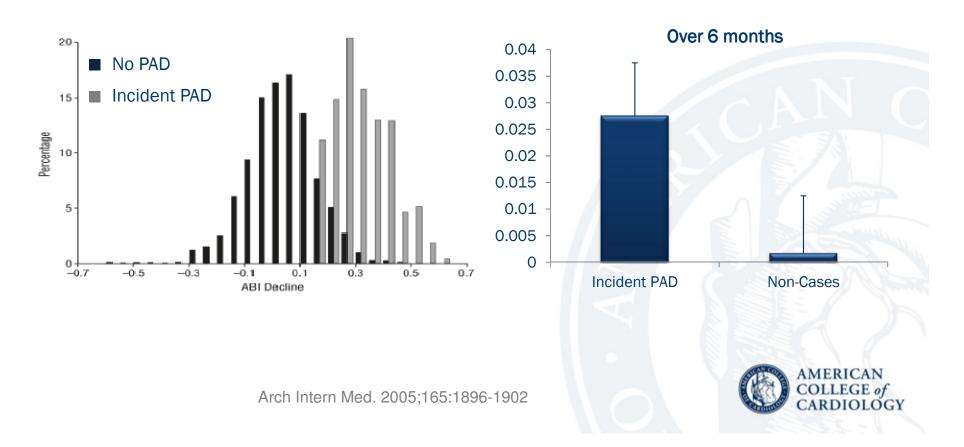
Provisional Follow-Up Recommendations

Assessment		Imatinib	Nilotinib	Dasatinib	Bosutinib	Ponatinil
Baseline		Follow good clinical practic	e			73173454
Clinical cardiovascular as	ssessment, including blood pressure		REC	REC	REC	REC
Fasting glucose			REC	ACI	ACI	REC
Fasting lipid pa						REC
Echocardiogra						ACI
ECG						ACI
Ankle-brachial	\A/la a 4 ! a 4 la a a					REC
-month follow-u	What is the c	utorr for (aetect	ion –		
Clinical cardiov						REC
Blood pressure - to 6-month fo	0.02 at 6 mg	onthe an	v decli	ne?		REC
Clinical cardio	0.02 at 0 111	oritins, ar	iy accii	iic:		REC
Blood pressure						REC
Fasting glucos						ACI
Fasting lipid paner						REC
Echocardiogram			ACI	ACI*	ACI	ACI
ECG			ACIT	ACI	ACI	ACI
Ankle-brachial index			REC	ACI	ACI	REC


NOTE. Practice guidelines regarding prevention of cardiovascular toxicity should be followed, including tobacco cessation counseling. In symptomatic patients or those with high cardiovascular risk, consider referral to cardiologist.

Abbreviations: ACI, as clinically indicated; ECG, electrocardiogram; REC, recommended; TKI, tyrosine kinase inhibitor.


*Low threshold for an echocardiogram in patient considered for treatment or being treated with dasatinib who has cardiopulmonary symptoms. †ECG prior to starting, after 7 days after starting, and after each dose change (package insert).


Spectrum of ABI Decline

Spectrum of ABI Decline

Spectrum of ABI Decline

Questions Raised

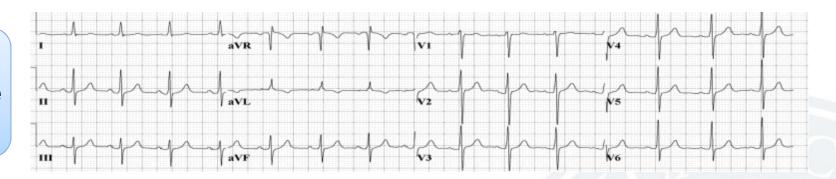
- What can be predicted by ABI?
- Does a normal test exclude risk,
 does an abnormal test prohibit therapy?
- Which additional tests should these patients have?
- Should this be done routinely or only in a subset?

Diffuse Progressive ASCVD with Nilotinib Acute Right-Hemispheric Stroke

2011

2012

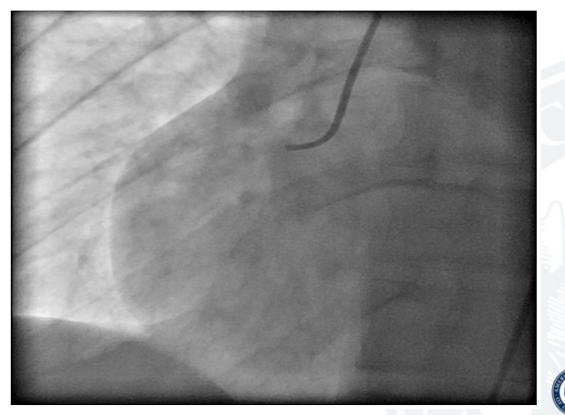
70 yo female w/CML, on nilotinib since 2004 w/PAD + CAD


Coon E.A. et al. Am J Hemato ; Soil For Sorgy

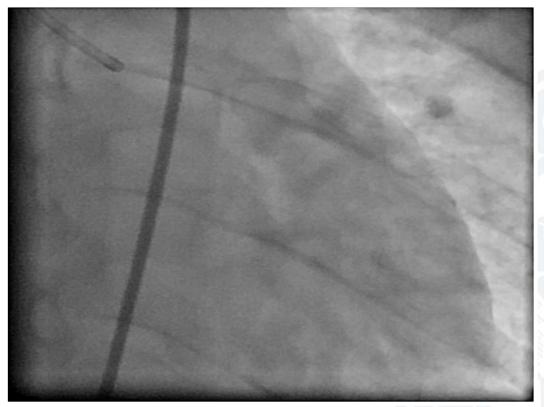
Case #1 continued 32 year-old female

- bilateral external iliac artery stenting and left SFA recanalization, started on DAPT
- development of left lower extremity compartment syndrome, requiring fasciotomy
- acute chest pain on post-op day #2

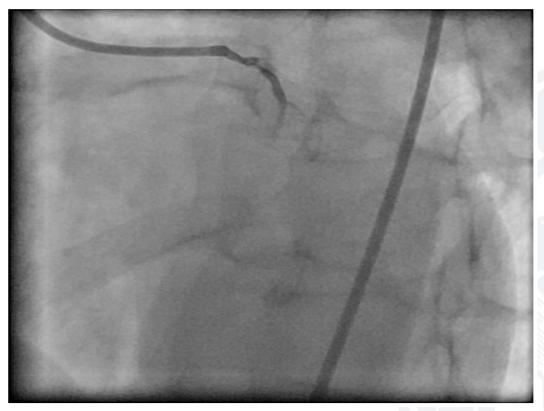
Baseline



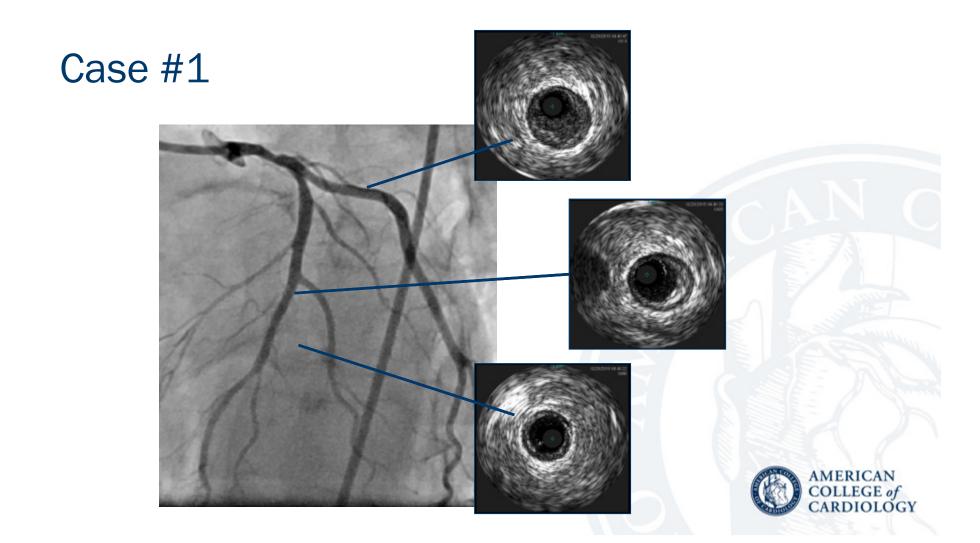
Acute chest pain



Case #1



Case #1



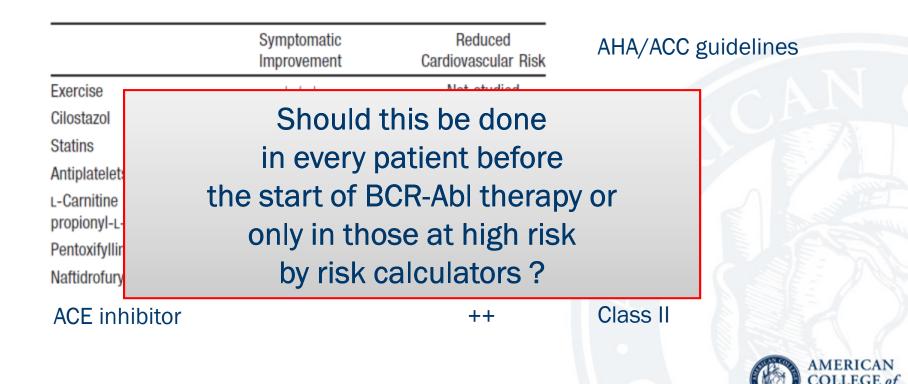
Case #1

Questions Raised

- Comprehensive screening?
- When and how to screen?
- How to respond to screening?
- How to follow after intervention?
- How to evaluate and pursue prevention?

Treatment Recommendations

	Symptomatic Improvement	Reduced Cardiovascular Risk
Exercise	+++	Not studied
Cilostazol	++	Neutral
Statins	+/-	+++
Antiplatelets	_	+++
L-Carnitine and propionyl-L-carnitine	++	Not studied
Pentoxifylline	++	Not studied
Naftidrofuryl	++	Not studied
ACE inhibitor		++


AHA/ACC guidelines

Class I

Class II

Treatment Recommendations

Summary: CV Toxicities of BCR-Abl TKIs

- accelerated atherosclerosis, especially Nilotinib and Ponatinib
- difficulties in cause-effect relationship determinations/ adjudication of events
- no intervention or prevention studies
- management not defined

Summary: ABI as a Universal Test

- ABIs hold promise as a prime surveillance test, but validation and role of baseline test not defined
- Role of additional testing (carotid U/S, cardiac stress test, CCTA) not defined
- Interpretation of tests in the broader scope of the disease and need for therapy

Summary: Other CV Toxicities of BCR-Abl TKIs

- systemic hypertension with ponatinib (office or ambulatory monitoring?)
- pulmonary hypertension and effusions with dasatinib (routine echocardiogram?)
- QTc prolongation with nilotinib (regular ECGs?)

AMERICAN COLLEGE of CARDIOLOGY