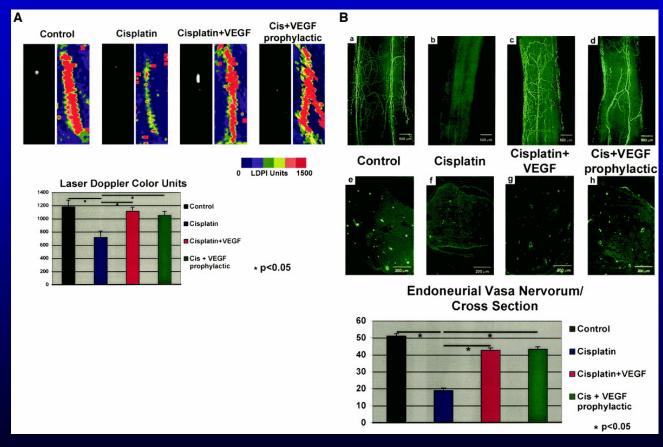


Renal Cell Cancer and TKIs:


What is my target BP?
Should I use home monitoring?
What is my target BP in cancer patients?

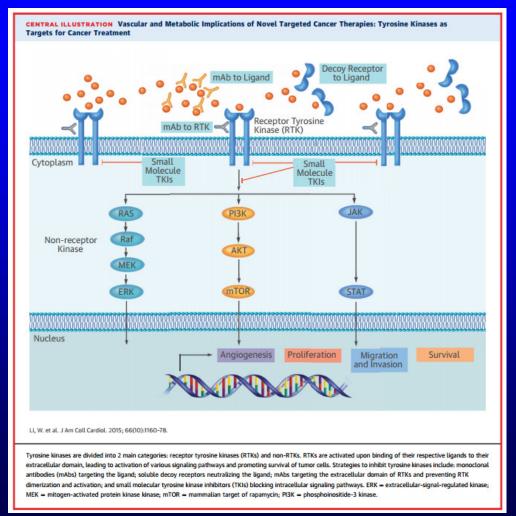
Daniel J Lenihan, MD Professor, Division of Cardiovascular Medicine Director, Clinical Research Vanderbilt University Ileana L. Pina, MD, MPH, FACC
Associate Chief for Academic Affairs, Cardiology
Professor, Department of Medicine
Professor, Department of Epidemiology and Population Heath
Montefiore Medical Center
Bronx, NY

Presenter Disclosure Information ACC Cardio-oncology Course Washington DC 2.17.17

- I will not discuss off label use or investigational use in my presentation.
- •I have financial relationships to disclose:
 - -Research support from: Takeda, Inc.
 - -Consultant (modest): Roche, Amgen, BMS, Prothena

Therapy for both Oncology and Cardiology are intimately intertwined at the vascular level

Kirchmair R. Circulation. 2005 May 24;111(20):2662-70.


Definition of a "Kinase Inhibitor":

 A drug that interferes with cell communication and growth and is sometimes used to treat cancer

Chemotherapeutic Agents in Use Known to Antagonize Vascular Endothelial Growth Factor (anti-VEGF) or have Anti-Angiogenic Properties

- Bevacizumab
- Sunitinib
- Sorafenib
- Vandetanib
- Pazopanib
- Axitinib
- Cabozantinib
- Ramucirumab
- Regorafenib

When considering CV toxicity of tyrosine kinase inhibitors (TKIs), the field is broad

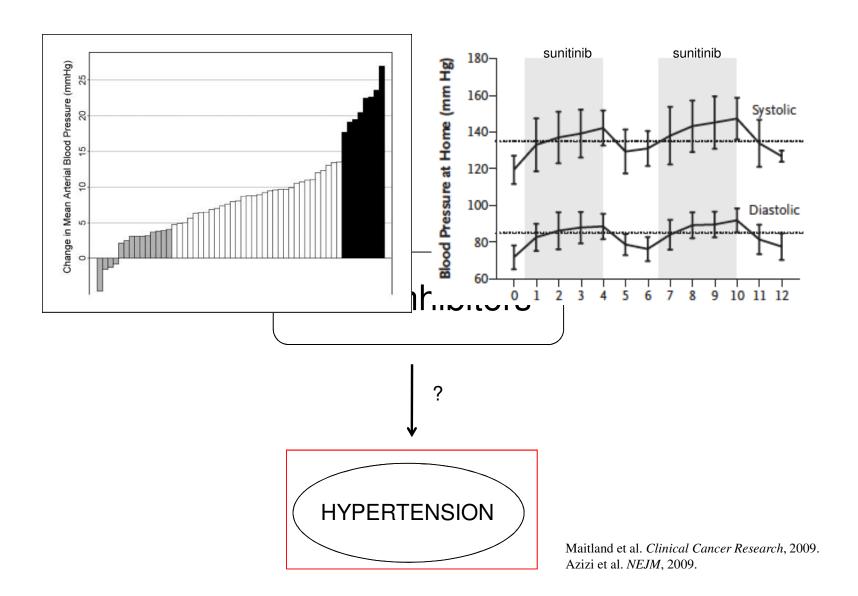
Li, W et al, JACC 2015, p1160-78

Case study: Anti-VEGF therapy

- 60 y/o F, with HTN and DM, presents with metastatic renal cell cancer that led to L nephrectomy, radiation to pelvis and ribs, and resection of R femur tumor who was started on sunitinib 2 months ago.
- MEDS: triamterene, losartan, sunitininb 37.5 mg, Zofran
- PE: BP 168/92, P88, wt 178#, R16
- No JVD, lungs clear, loud S4, trace ankle edema
- Labs: Cr 1.1, TC 227, LDL 129, HDL 31, BNP 18, LVEF
 55 with mild LVH

Case Study: What should be done?

- Control BP with what meds?
- How do we follow this patient going forward?
- Any other general recs?


What about Hypertension as a precursor to HF?

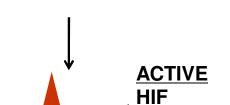
Sunitinib, a novel oral chemotherapeutic agent with anti-VEGF properties, is associated with hypertension and heart failure

Table 2. Nature of Cardiotoxicity, Severity of	f Heart Failure, and Short Term Outcomes
--	--

Pt #	BP at baseline	Dose	Duration of drug (days)	Worst NYHA Class	BNP (pg/ml; normal ≤100)	LVEF post- drug	HF Therapy	LVEF post Treatment with HF Therapy	Max BP on Drug	Outcome
1	150/72	50	44	4	558	25- 30%	ACE-I, B- blocker	25-30%	155/85	Expired in 6 months
2	150/80	50	4	3	3338	30- 35%	Nitrates, B- blocker	45-50%	184/110	Expired in 4 months
3	140/94	25	4	4	2110	25- 30%	Increased ACE-I	30%	210/110	Expired in 1 month
4*	142/67	25	29	2	409	40- 45%	Increased ACE-I	60-65%	174/85	LVEF improved then worsened to 35-40% on sunitinib
5	162/92	50	20	4	409	<20%	Added ACE- I, B-blocker	-	195/97	Expired in 1 month
6	146/75	50	29	3	356	50- 55%	B-blocker	-	160/80	HF symptoms improved after sunitinib was
										discontinued and sinus rhythm was restored

Khakoo, et al, 2008; 112:2500-8

Emerging model for VSP inhibitor Associated Cardiomyopathy

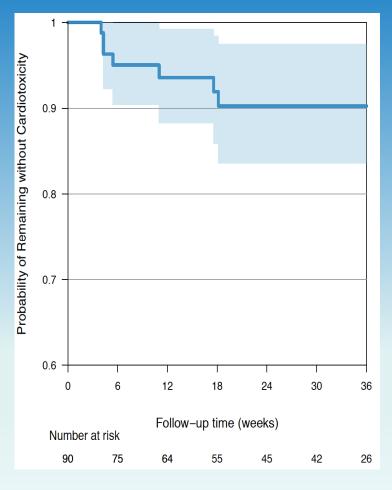

Inhibition of VEFGR or PDGFR

Microvascular Dysfunction

Chronic Myocyte Hypoxia

HIFO

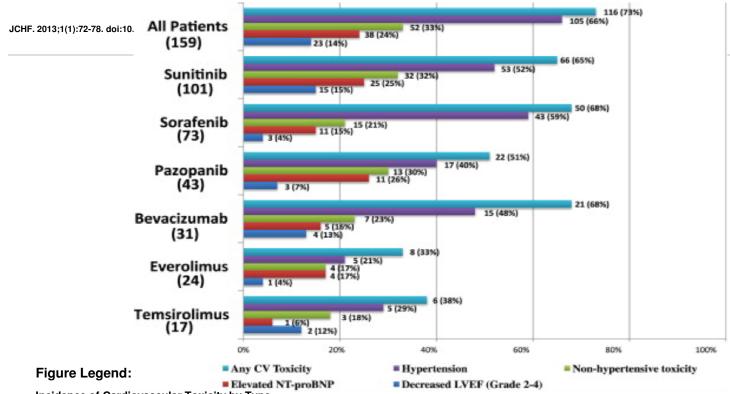
HIFB


VSP-Inhibitor Associated Cardiomyopathy

Meta-analysis of clinical heart failure in sunitinib trials

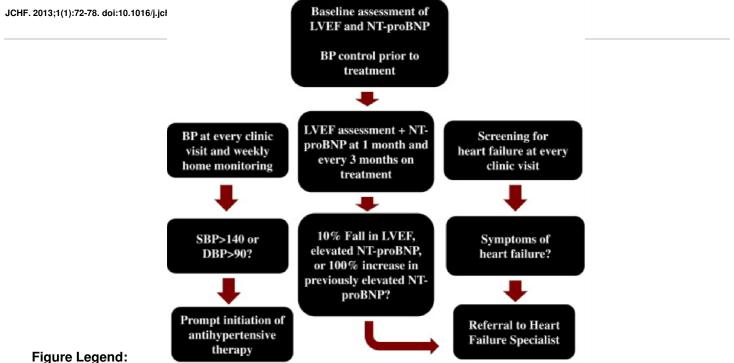
				No. o	of Sample		CHF	
Trial	Year		Phase	Even			dence	95% CI
II-grade CHF (n :	= 12)							
Demetri et al ²		2006	III	22	202	10.	.9	7.3 to 16.0
Motzer et al ³		2007	III	78	375	20.	.8 1	7.0 to 25.2
Motzer et al ³⁷		2006	II	7	63	11.	.1	5.4 to 21.5
Motzer et al ³⁸		2006	II	8	105	7.	.6	3.9 to 14.5
Saltz et al44		2007	II	0	82	0.	.0	
Kulke et al43		2008	H	1	107	0.	.9	0.1 to 6.3
Gore et al ³⁵		2009	EAP	11	4,371	0.	.3	0.1 to 0.5
Hensley et al45		2009	II	1	23	4.	.4	0.6 to 25.2
Kontovinis et al	36	2009	П	3	42	7.	.1	2.3 to 19.9
MacKay et al41		2010	II	1	19	5.	.3	0.7 to 29.4
Tomita et al ³⁹		2010	II.	2	51	3.	.9	1.0 to 14.4
Matsumoto et a	al ⁴⁰	2011	II.	0	18	0.	.0	
Combined				134	5,458	4.	.1% 1.!	5% to 10.69
						Test	for heterogeneity: $P < .001$; $I^2 = 9$	
	S	unitinib	Co	ntrol				
	No. of Event Total No.	ts/ Incidence, % (95% CI)	No. of Events Total No.	/ Incidence, % (95% CI)	Relative Risk (95% CI)			
All-grade								
Demetri (2006)	22/202	10.9 (7.3 to 16.0)	3/102	2.9 (1.0 to 8.7)	3.70 (1.14 to 12.1)	-	-	
Motzer (2009)	78/375	20.8 (17.0 to 25.2)	44/360 1	12.2 (9.2 to 16.0)	1.70 (1.21 to 2.39)	, a	-	.(
Overall Heterogeneity	100/577	15.5 (8.0 to 27.9)	47/462	6.7 (1.6 to 24.1)	1.81 (1.30 to 2.50)	1	•	<.
test, Q		8.71 .003		6.30 .012	1.53 .216	0.1 1	5 10	50
 2		88.5%		84.1%	34.8%	R	R (95% CI)	

Richards,...Moslehi and Choueiri. Journal of Clinical Oncology, 2011.


Sunitinib Associated with LV Dysfunction

- 90 patients with metastatic renal cell cancer, treated with sunitinib
- On population level, significant but small decline in LVEF of 1.9% with sunitinib
- Overall, 9.7% developed LV dysfunction and all events occurred by cycle 3 (majority in first cycle)

From: The Frequency and Severity of Cardiovascular Toxicity From Targeted Therapy in Advanced Renal Cell Carcinoma Patients



Incidence of Cardiovascular Toxicity by Type

The incidence of cardiovascular toxicity varied by type of toxicity and by chemotherapy agent received. Many patients received multiple therapies in succession and are included only once in "All Patients." CV = cardiovascular; LVEF = left ventricular ejection fraction; NT-proBNP = N-terminal B-type natriuretic peptide.

From: The Frequency and Severity of Cardiovascular Toxicity From Targeted Therapy in Advanced Renal Cell **Carcinoma Patients**

The Stanford Monitoring Algorithm for Targeted Therapies

Cardiovascular monitoring algorithm for patients with renal cell carcinoma receiving targeted chemotherapy. BP = blood pressure; DBP = diastolic blood pressure; SBP = systolic blood pressure; other abbreviations as in Figure 1.

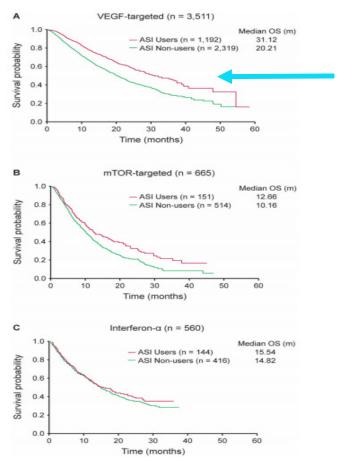


Figure 2.

Kaplan–Meier estimates of A) OS for patients receiving VEGF-targeted therapy, B) OS for patients receiving mTOR-targeted therapy, and C) OS for patients receiving IFN-a therapy stratified by ASI users versus non-users.

In Renal Cell Cancer, reninangiotensin inhibitors are critical therapies especially with VSP inhibitors

RAS inhibitors seem to be very important for overall survival

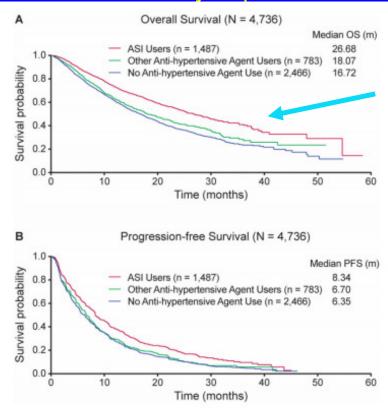


Figure 1.

Kaplan–Meier estimates of A) OS for the overall cohort, and B) PFS for the overall cohort stratified by ASI users, other anti-hypertensive agent(s) users, versus no anti-hypertensive agent use.

The problems are not always LV dysfunction

		Overall Incidence of	High-Grade VTE	RR of VTE				High-Grade ATE	RR of ATE	
Agent	Study (Ref. #)	VTE (%)	(Grade 3-5) (%)	All-Grade	High-Grade	Study	Incidence of ATE (%)	(Grade 3-5) (%)	All-Grade	High-Grade
Bevacizumab (VEGF mAb)	Meta-analysis, 7,956 patients, 15 trials (120)	11.9	6.3	1.33	1.38	Meta-analysis, 12,617 patients, 20 trials (121)	3.3	2.0	1.44	2.14 (high-grade cardiac ischemia)
Pazopanib (TKI)	Meta-analysis, 7,441 patients, 17 trials (sunitinib: 3 trials;	2.76	1.92	1.10	0.85	Meta-analysis, 844 patients, 2 trials (123)	1.2	NA	4.61	NA
Sunitinib (TKI)	sorafenib: 4 trials; pazopanib: 3 trials; vandetanib:					Meta-analysis, 4,628 patients, 4 trials (124)	1.3	NA	3.1	NA
Sorafenib (TKI)	5 trials; axitinib: 2 trials) (122)					Meta-analysis, 4,759 patients, 6 trials (124)	1.7	NA	2.39	NA
Axitinib (TKI)						Meta-analysis, 572 patients, 3 trials (123)	1.2	NA	1.17	NA
Vandetanib (TKIs)						Phase III RCT, 623 patients (123)	0	NA	0.13	NA
Regorafenib (TKI)	Phase III RCT in mCRC, 760 patients (125)	2	NA	NA	NA	NA	NA	NA	NA	NA
	Phase III RCT in advanced GIST, 199 patients (126)					or ATE events reporte gorafenib arm died fron during treatme	n cardiac arre			
Cabozantinib (TKI)	Phase III RCT in MTC, 330 patients (112)	5.6	3.7	NA	NA	Phase III RCT in MTC (112)	2.3	0.9	NA	NA
Aflibercept (VEGF trap)	Phase III RCT in mCRC, 1,226 patients (127)	9.3	7.8	NA	NA	Phase III RCT in mCRC, 1,226 patients (127)	2.6	1.8	NA	NA
Ramucirumab (VEGFR2 mAb)	Phase III RCT in advanced gastric or GEJ adenocarcinoma, 665 patients (128)	3.98	2.45	NA	NA	Phase III RCT in advanced gastric or GEJ adenocarcinoma, 655 patients (128)	1.83	0.92	NA	NA
Lenvatinib (TKI)	Phase III trial, 261 patients (116)	5.4	3.8	NA	NA	Phase III trial, 261 patients (116)	5.4	2.7	NA	NA

ATE = arterial thromboembolic event; GEJ = gastroesophageal junction; mAb = monoclonal antibody; mCRC = metastatic colorectal cancer; MTC = medullary thyroid cancer; RCT = randomized controlled trial; TKI = tyrosine kinase inhibitor; VTE = venous thromboembolic event; other abbreviations as in Table 3.

Li, W et al, JACC 2015, p1160-78

Statins are helpful in renal cell cancer especially with anti-VEGF directed therapy

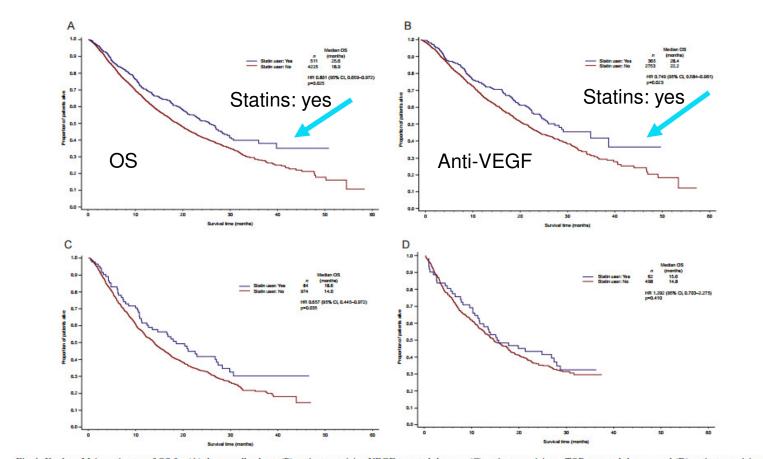
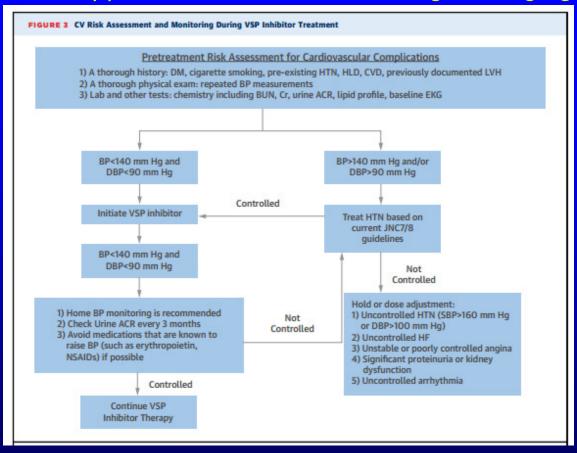


Fig. 1. Kaplan—Meier estimates of OS for (A) the overall cohort, (B) patients receiving VEGF-targeted therapy, (C) patients receiving mTOR-targeted therapy and (D) patients receiving IFN-a therapy stratified by statin users versus non-users.


Case study: Anti-VEGF therapy

- 60 y/o F, with HTN and DM, presents with metastatic renal cell cancer that led to L nephrectomy, radiation to pelvis and ribs, and resection of R femur tumor who was started on sunitinib 2 months ago.
- MEDS: triamterene, losartan, sunitininb 37.5 mg, Zofran
- PE: BP 168/92, P88, wt 178#, R16
- No JVD, lungs clear, loud S4, trace ankle edema
- Labs: Cr 1.1, TC 227, LDL 129, HDL 31, BNP 18, LVEF
 55 with mild LVH

Case Study: What should be done?

- Control BP with what meds?
- stopped triamterene, used furosemide for edema, started carvedilol, added amlodipine eventually, used hydralazine intermittently
- How do we follow this patient going forward?
 periodic BNP, rarely EF measured only for progressive dyspnea
- Any other general recs?
 sodium restriction, exercise, lipid therapy, aspirin

How do we best approach cardiac issues during antiangiogenic therapy?

Li, W et al, JACC 2015, p1160-78

- · First line therapy: RAS inhibitors, amlodipine
- · carvedilol can be very useful second line
 - should we use NO producing agents: long-term nitrates?

Are there **inhibitors** on the cancer therapy horizon that could be concerning for the development of Hypertension and Cardiovascular Events??

There is a balance between protein synthesis and degradation in the myocardium

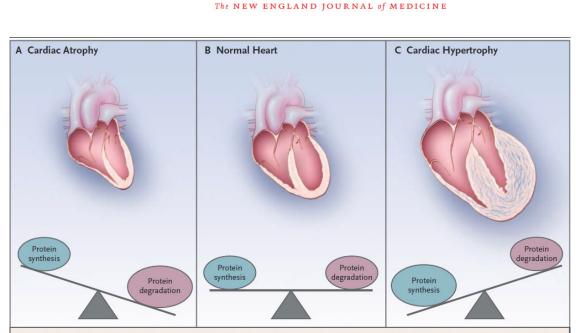


Figure 1. Association of the Development of Cardiac Atrophy and Hypertrophy with Changes in the Balance between Protein Synthesis and Protein Degradation.

The development of cardiac atrophy involves both the inhibition of protein synthesis and a simultaneous increase in the rates of protein degradation (Panel A), resulting in shorter half-lives of individual cardiac proteins, as compared with the half-lives of proteins in a steady state, when protein synthesis and degradation are balanced (Panel B). The development of cardiac hypertrophy involves both an increased fractional synthesis rate of proteins and the suppression of protein degradation (Panel C), resulting in longer half-lives of cardiac proteins.⁷⁻¹⁰

Properties of bo	Properties of bortezomib and the second-generation proteasome inhibitors								
Proteasome inhibitor	$IC_{50} \beta 5/\beta 2/\beta 1$ (nM)	IC ₅₀ NF-κB (nM)	Dissociation t _{1/2} (min)						
Bortezomib	2.4-7.9/590-4200/24-74 [16,18,25]	36–40 [18,25,39]	110 [18]						
MLN9708 [18]	3.4/3500/31	62	18						
CEP-18770 [19,20]	3.8/>100/<100	NR	NR—slowly reversible						
Carfilzomib [16]	6/3600/2400	NR	Irreversible						
PR-047 [21]	36/NR/NR	NR	Irreversible						
NPI-0052	3.5/28/430 [25]	13–20 [25,39]	Irreversible						
Abbreviations: IV, intrav	enous; MCL, mantle cell lymphoma; MM,	multiple myeloma; NR,	not reported; SC, subcutan						

Dick, LR and Fleming, PE Drug Discovery Today ;15 (5/6) March 2010

A report of 6 cases describing carfilzomib related cardiac dysfunction and the patterns of cardiotoxicity

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	
Carfilzomib exposure	1200-0000 1000	0.00000	886.0	7000	1910.4	10000-0000 5000	
Dosing (mg/m ²)	20×1 then 27	27	20	20	27	20×1 then 27	
Duration of therapy (mo)	3	5	6	1	3	3	
Total cumulative dose (mg/m ²)	405	903	972	141	540	444	
Baseline							
NYHA	I	I	I	I	I	I	
LVEF	50-55	60-65	55	55-60	58	68	
BNP (pg/mL)	N/A	791	594*,	N/A	N/A	N/A	
Troponin (ng/mL)	N/A	N/A	< 0.05	N/A	N/A	N/A	
With carfilzomib							
Worst NYHA	III	II	III	III	III	III	
Nadir of LVEF (%)	25-30	47	50	< 20	25-30	44	
Highest BNP or NT-proBNP [†] (pg/mL)	1,837	170 [†]	2,988	2,026	640	744	
Highest troponin	< 0.05	< 0.05	< 0.05	2.5	0.01	< 0.05	
Recovery							
Carfilzomib discontinuation	Permanent	Temporary	Permanent	Permanent	Permanent	Temporary	
Heart Failure Therapy Initiated	Beta-blocker; ACE-I; loop diuretic	None	Beta-blocker; ARB	Beta-blocker; ACE-I	Beta-blocker; aldosterone antagonist	Beta-blocker; aldosterone antagonist; loop diuretic	
Cardiac HF, LV dys		Mild LV and RV	HF.	ACS, HF, QTc, L	V HF, LV	HF,	

LV, left ventricular; RV, right ventricular; ACS, acute coronary syndrome; QTc. QTc prolongation.

NT-proBNP.

^{*}NT-proBNP 3 months before starting carfilzomib therapy.

Cardiovascular SAEs in RCTs Phase 3 Carfilzomib Trials

ASPIRE Trial

	Table 3. Adverse Events in the Safe	ty Population.*				
	Event		omib Group =392)	Control Group (N=389)		
		All Grades	Grade 3 or Higher	All Grades	Grade 3 or Higher	
			number of pati	ents (percent)		
	Dyspnea	76 (19.4)	11 (2.8)	58 (14.9)	7 (1.8)	
	Hypertension	56 (14.3)	17 (4.3)	27 (6.9)	7 (1.8)	
	Acute renal failure†	33 (8.4)	13 (3.3)	28 (7.2)	12 (3.1)	
	Cardiac failure‡	25 (6.4)	15 (3.8)	16 (4.1)	7 (1.8)	
	Ischemic heart disease§	23 (5.9)	13 (3.3)	18 (4.6)	8 (2.1)	
	Total Cardiac AEs	26.6%	11.4%	15.6%	5.7%	
Stewart, AK et al, NEJM 2015, p.142-152.	Total Cardiac AEs + Dyspnoea	46%	14.2%	30.5%	7.5%	
	DVT/PE	10.2%		6.2%		

Renal Cell Cancer and TKIs Conclusion

- Vascular changes during chemotherapy are important and responsible for HTN, HF and thrombosis
- Prevention and early treatment of cardiac damage is possible
- Newer therapies that result in HTN have important cardiac safety considerations