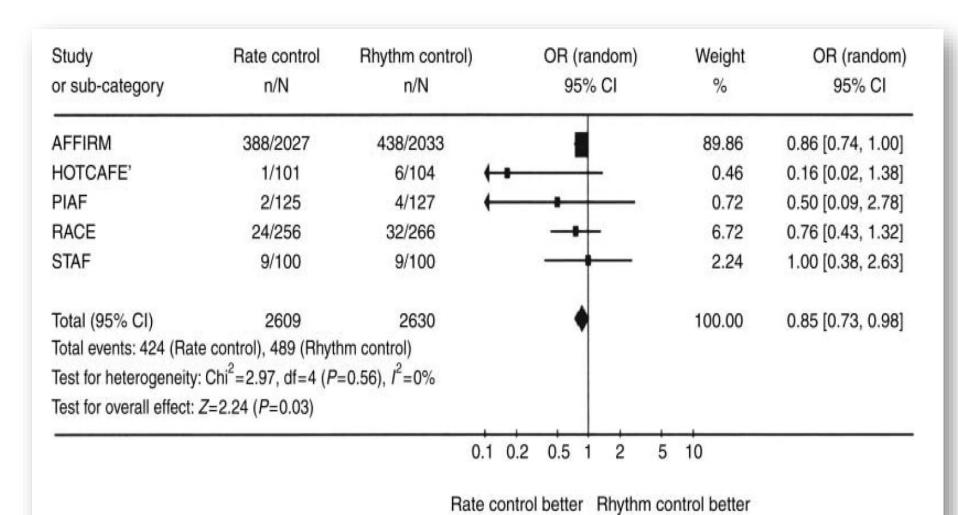
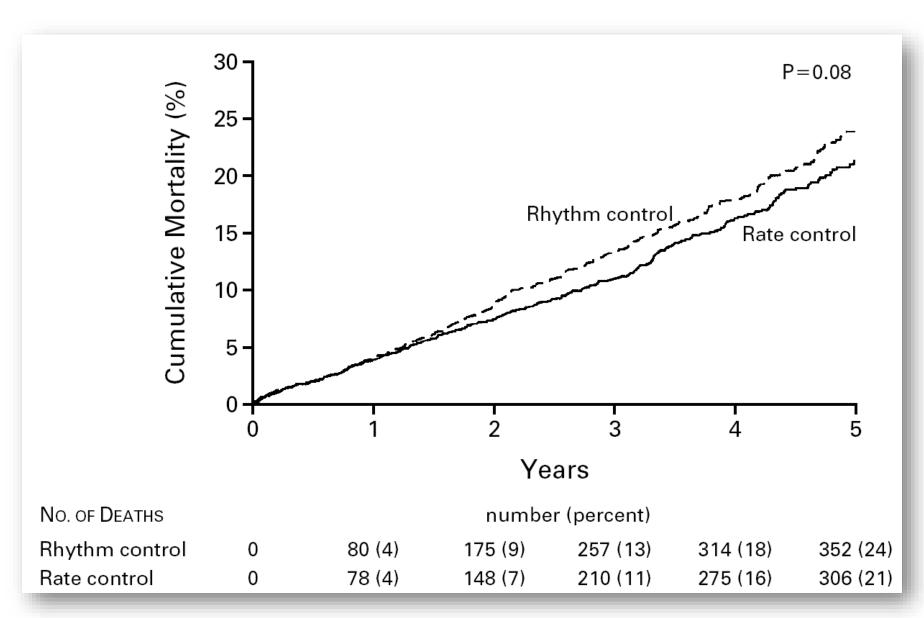
Ablative therapy for AF

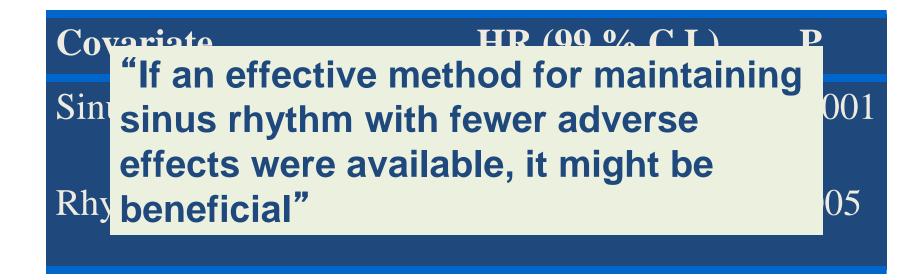
Dr. Salem Alkaabi, MD, FRCP, FACC
Interventional cardiologist &
Electrophysiologist
Zayed Military Hospital


Objectives

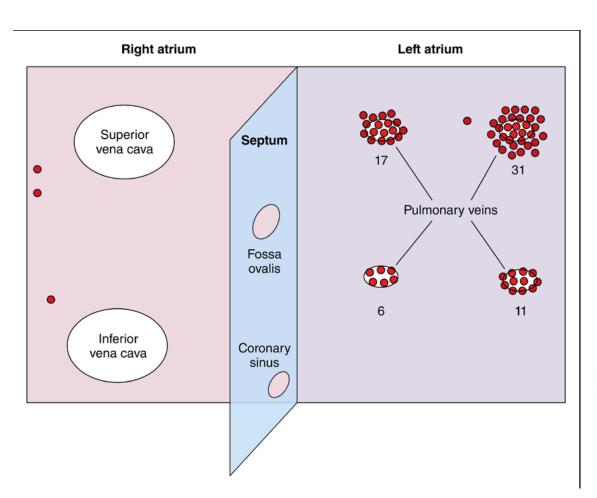
Why we target the pulmonary veins?


who benefits the most?

when it should be offered?


Rate Control vs Rhythm Control

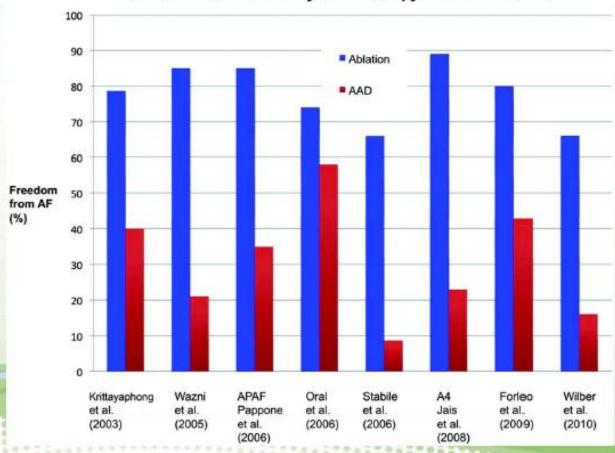
AFFIRM



Sinus Rhythm and Survival in AFFIRM

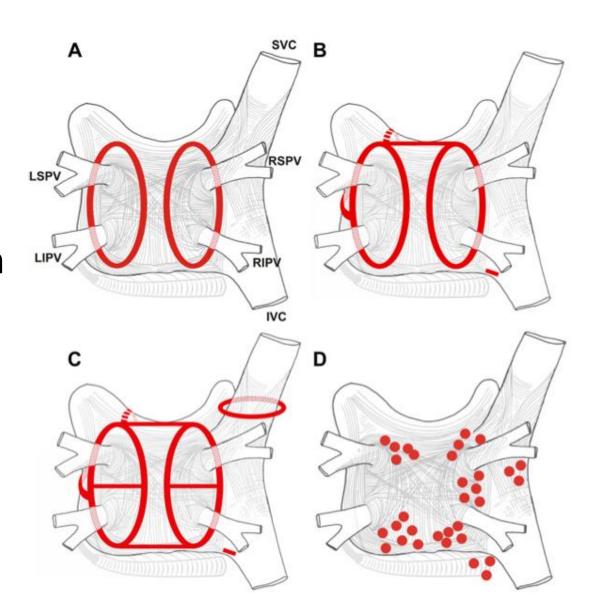
Adjusted for age, CAD, CHF, Diabetes, CVA/TIA, first episode of AF, Warfarin and Digoxin use.

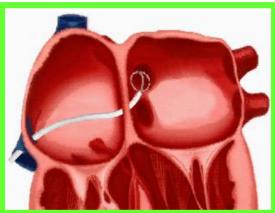
PV Triggers 1998

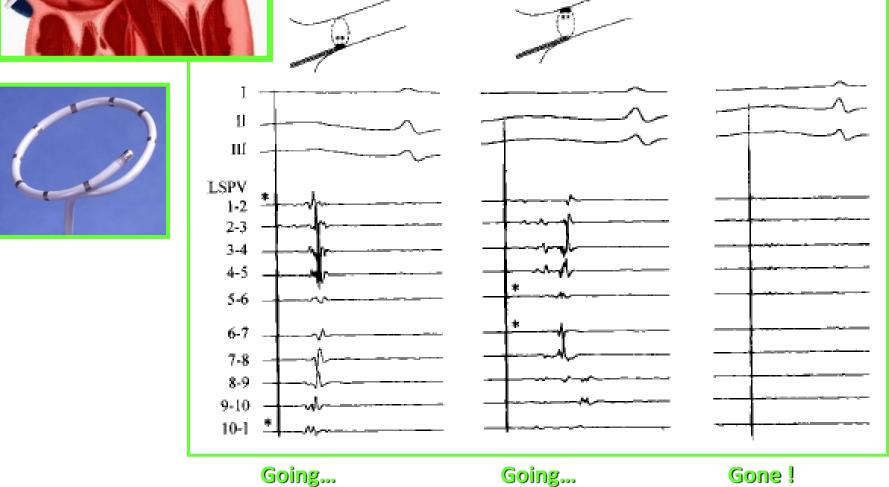

Figure 1. Locations of atrial tachycardia that initiated atrial fibrillation in 45 patients reported in 1998.

Note that the majority of focal atrial tachycardias that precipitated atrial fibrillation lie within the pulmonary veins. Adapted with permission from Haïssaguerre et al⁵ with permission from the publisher. Copyright © 1998 Massachusetts Medical Society.

Summary of randomized control trials comparing catheter ablation versus antiarrhythmic therapy.

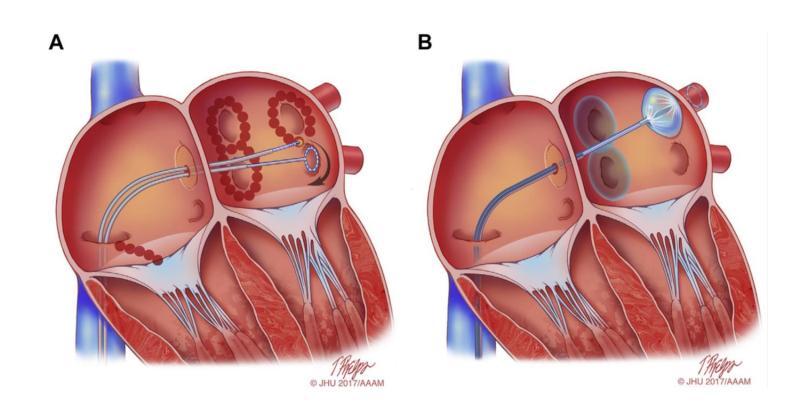




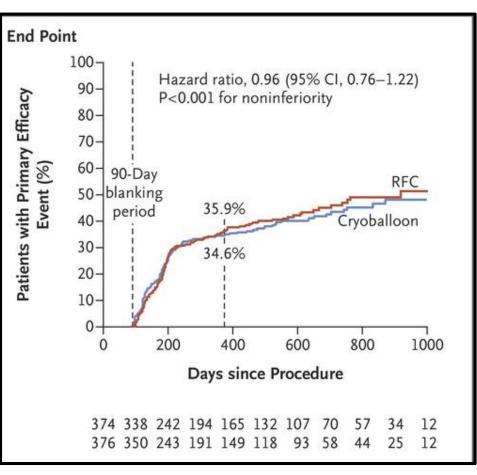

What would be your strategy?

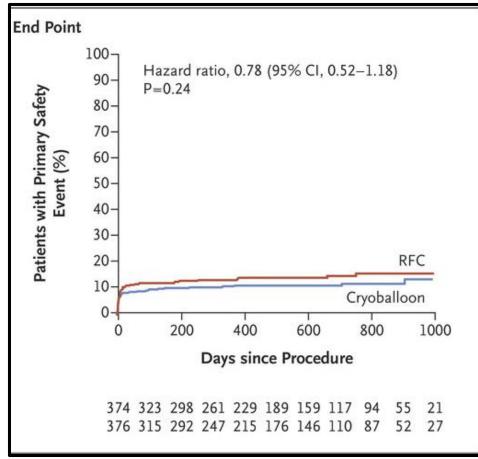
- A. PVI only
- B. PVI+ lines
- C. PVI+ SVC
- D. Rotor ablation

Pulmonary Vein Isolation


Strategy

e30 Heart Rhythm, Vol ■, No ■, ■ 2017


Table 3 Atrial fibrillation ablation: strategies, techniques, and endpoints


	Recommendation	Class	LOE	References
PV isolation by catheter ablation	Electrical isolation of the PVs is recommended during all AF ablation procedures.	I	Α	245,261,262,456,462,489,503,515,527, 655,673,684,709,733,1015,1025,1026, 1027,1030
	Achievement of electrical isolation requires, at a minimum, assessment and demonstration of entrance block into the PV.	I	B-R	245,261,262,456,462,489,503,515,527, 655,673,684,709,733,1015,1025,1026, 1027,1030
	Monitoring for PV reconnection for 20 minutes following initial PV isolation is reasonable.	IIa	B-R	263,265,448,450,451,452,457-461,462
	Administration of adenosine 20 minutes following initial PV isolation using RF energy with reablation if PV reconnection might be considered.	IIb	B-R	265,448,449-451,454,456,461,463-468
	Use of a pace-capture (pacing along the ablation line) ablation strategy may be considered.	IIb	B-R	264,472–475
	B	***	D 110	445 477_481

If you refer for ablation, RF or Cryo?

Fire and Ice

	CB		RF			Risk ratio		Risk ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI		M-H, random, 95% CI	
Jourda et al, 2015	11	75	9	75	2.1%	1.22 [0.54, 2.78]			
Khoueiry et al, 2016	53	311	53	376	11.3%	1.21 [0.85, 1.72]		-	
Knecht et al, 2014	37	71	31	71	11.6%	1.19 [0.84, 1.69]		-	
Kuck et al, 2016	138	374	143	376	40.5%	0.97 [0.81, 1.17]			
Kuehne et al, 2010	3	25	2	25	0.5%	1.50 [0.27, 8.22]		- •	
Luik et al, 2015	38	144	43	147	10.1%	0.90 [0.62, 1.31]		-	
Perez-Castellano et al, 2014	13	25	8	25	3.0%	1.63 [0.82, 3.22]		+	
Straube et al, 2015	31	107	39	99	9.4%	0.74 [0.50, 1.08]		-	
Wasserlauf et al, 2015	40	101	39	100	11.7%	1.02 [0.72, 1.43]		+	
Total (95% CI)		1233		1294	100.0%	1.01 [0.90, 1.14]		•	
Total events	364		367						
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 =$	7.34, df =	8 (P=	0.50); /2 =	= 0%			0.04	1 1	400
Test for overall effect: $Z = 0.21$	(P = 0.83))	*55.0				0.01	0.1 1 10 CB better RF better	100

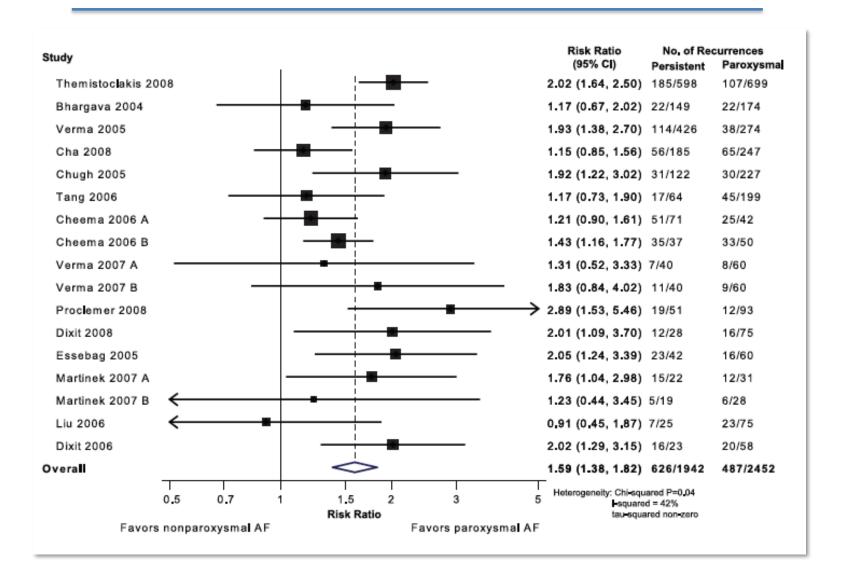
EP Europace, 2016, (19): 3, 378–384

AF Ablation: For Which Patients?

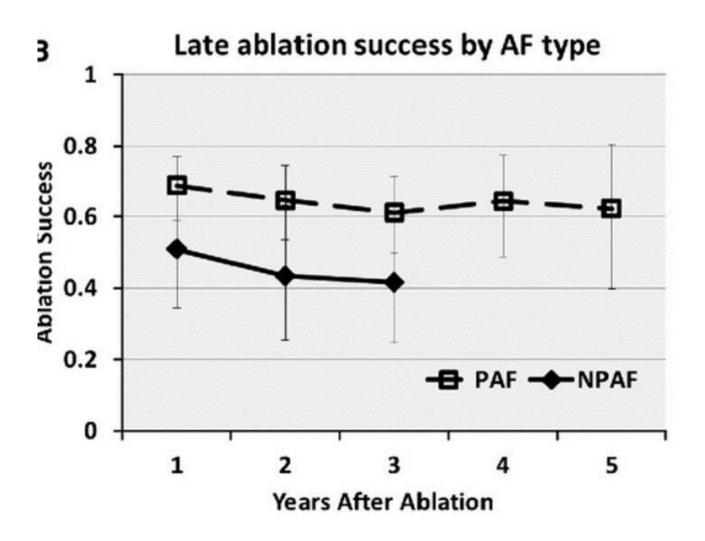
Randomized Clinical Trials

- Mostly white men ~ 50-60 years with paroxysmal AF
- Compared ablation to antiarrhythmics (or rate control)
- Ablation better in keeping sinus rhythm 66-87% vs. 9-58%

Nonrandomized Comparisons

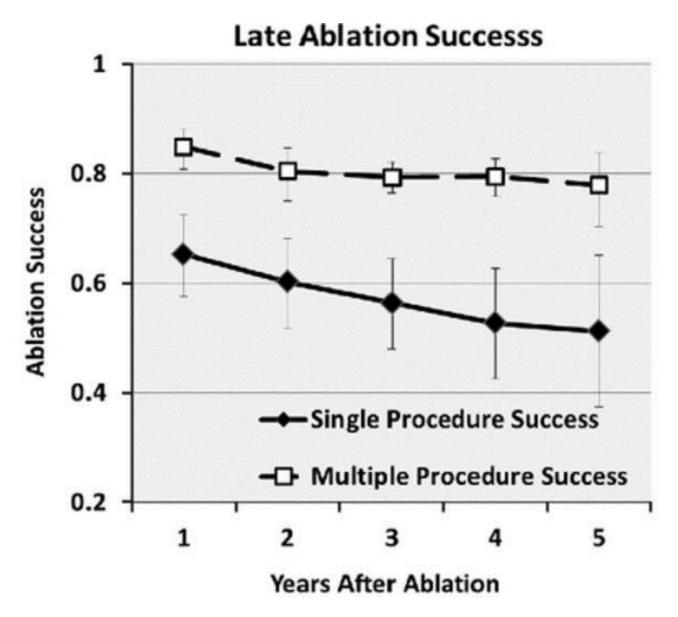

- Similar to above mostly paroxysmal AF
- AF ablation success at keeping sinus rhythm (typically at 1 year):
 - Single procedure/Off AADs = 57% (95% CI 50%-64%)
 - Multiple procedure/Off AADs = 71% (95% CI 65%-77%)
 - Multiple procedure/On AADs = 77% (95% 73%-81%)
- Fewer studies in non-Paroxysmal AF success rate 47%

Can we pick the right patient?


• Systematic review characteristics associated with success of AF ablation (45 studies, median follow up 12 months).

Variable	Studies (n)	Significant Association
AF Type	17	6
LVEF	17	5
LA Diameter	20	4
Structural Heart Disease	21	2
AF Symptom Duration	16	3
Age	22	1
Gender	23	0
Hypertension	11	2

Can we pick the right patient?



Long-term Outcomes of AF Ablation

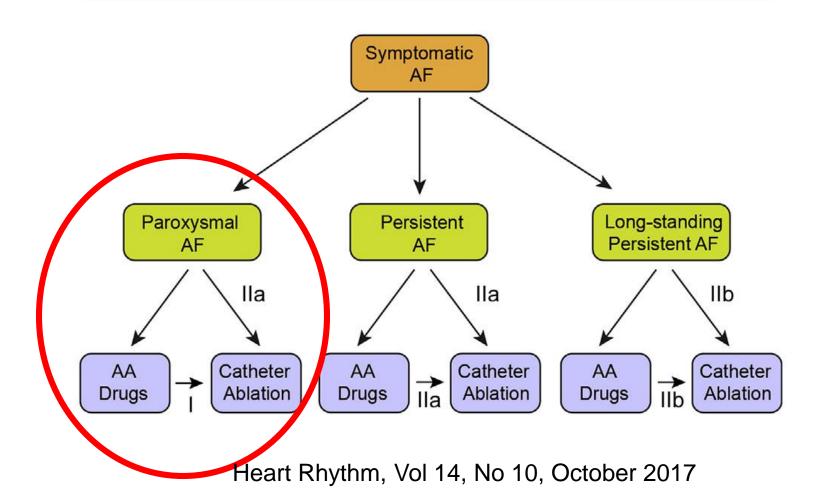
Ganesan et al , J Am Heart Assoc. 2013

Long-term Outcomes of AF Ablation

Ganesan et al, J Am Heart Assoc. 2013

What do the guidelines say?

SIZE OF TREATMENT EFFECT


		CLASS I Benefit >>> Risk Procedure/Treatment SHOULD be performed/ administered	CLASS IIa Benefit >> Risk Additional studies with focused objectives needed IT IS REASONABLE to perform procedure/administer treatment	CLASS IIb Benefit ≥ Risk Additional studies with broad objectives needed; additional registry data would be helpful Procedure/Treatment MAY BE CONSIDERED	CLASS III No Benefit or CLASS III Harm Procedure/ Test Treatment COR III: Not No Proven No benefit Helpful Benefit COR III: Excess Cost Harmful Harm W/o Benefit to Patients or Harmful		
ESTIMATE OF CERTAINTY (PRECISION) OF TREATMENT EFFECT	LEVEL A Multiple populations evaluated* Data derived from multiple randomized clinical trials or meta-analyses	■ Recommendation that procedure or treatment is useful/effective ■ Sufficient evidence from multiple randomized trials or meta-analyses	■ Recommendation in favor of treatment or procedure being useful/effective ■ Some conflicting evidence from multiple randomized trials or meta-analyses	■ Recommendation's usefulness/efficacy less well established ■ Greater conflicting evidence from multiple randomized trials or meta-analyses	Recommendation that procedure or treatment is not useful/effective and may be harmful Sufficient evidence from multiple randomized trials or meta-analyses		
	LEVEL B Limited populations evaluated* Data derived from a single randomized trial or nonrandomized studies	■ Recommendation that procedure or treatment is useful/effective ■ Evidence from single randomized trial or nonrandomized studies	■ Recommendation in favor of treatment or procedure being useful/effective ■ Some conflicting evidence from single randomized trial or nonrandomized studies	■ Recommendation that procedure or treatment is not useful/effective and may be harmful ■ Evidence from single randomized trial or nonrandomized studies			
	LEVEL C Very limited populations evaluated* Only consensus opinion of experts, case studies, or standard of care	■ Recommendation that procedure or treatment is useful/effective ■ Only expert opinion, case studies, or standard of care	■ Recommendation in favor of treatment or procedure being useful/effective ■ Only diverging expert opinion, case studies, or standard of care	■ Recommendation's usefulness/efficacy less well established ■ Only diverging expert opinion, case studies, or standard of care	■ Recommendation that procedure or treatment is not useful/effective and may be harmful ■ Only expert opinion, case studies, or standard of care		

What do the guidelines say?

- Prior to consideration of AF catheter ablation, assessment of the procedural risks and outcomes relative to the individual patient is recommended (Class I, Level of Evidence C).
- AF catheter ablation **should not** be performed in patients who cannot be treated with anticoagulant therapy during or following the procedure (Class III-Harm, Level of Evidence C).
- AF catheter ablation to restore sinus rhythm **should not** be performed with the sole intent of obviating the need for anticoagulation (Class III-Harm, Level of Evidence C).

Guidelines 2017

Indications for Catheter Ablation of Symptomatic Atrial Fibrillation

Take Home Messages

- AF catheter ablation is more effective in maintaining sinus rhythm than drugs
 - RCT evidence predominantly in paroxysmal AF
 - Improves quality of life in symptomatic patients
 - Little or no evidence in harder clinical endpoints
- The symptomatic paroxysmal AF patient with limited or no comorbidities appears to be the best candidate.

Thank you