

FOURIER

<u>Further cardiovascular OU</u>tcomes <u>Research with</u> PCSK9 <u>Inhibition in subjects with Elevated Risk</u>

Luis Afonso MD. FACC
Professor, Internal Medicine,
Division of Cardiology
Director Cardiovascular Fellowship Program
Director Echocardiography Laboratory,
Wayne State University School of Medicine
Detroit Medical Center, Detroit, MI, USA

NO DISCLOSURES

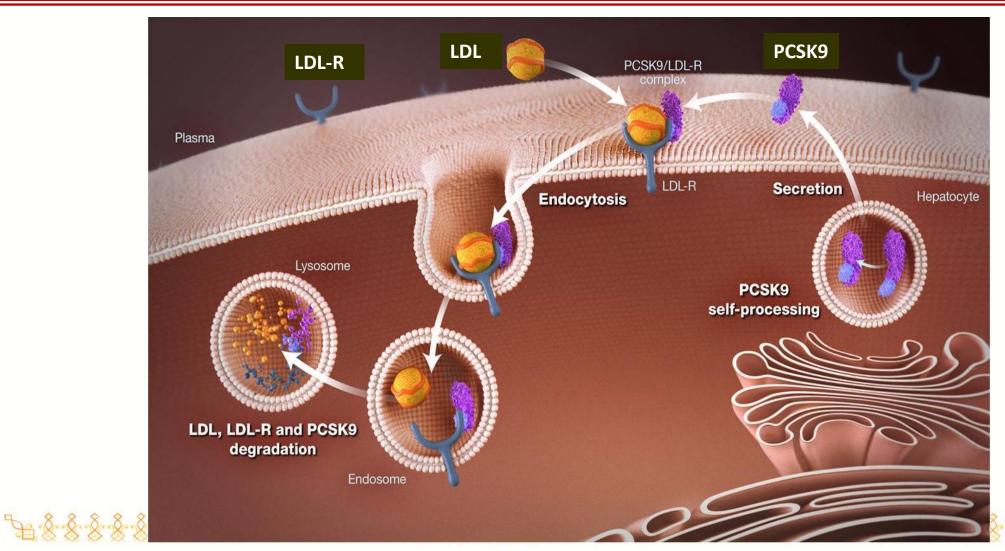
Slides adapted from MS Sabatine, for the FOURIER Steering Committee & Investigators

American College of Cardiology – 66th Annual Scientific Session Late-Breaking Clinical Trial, March 17, 2017

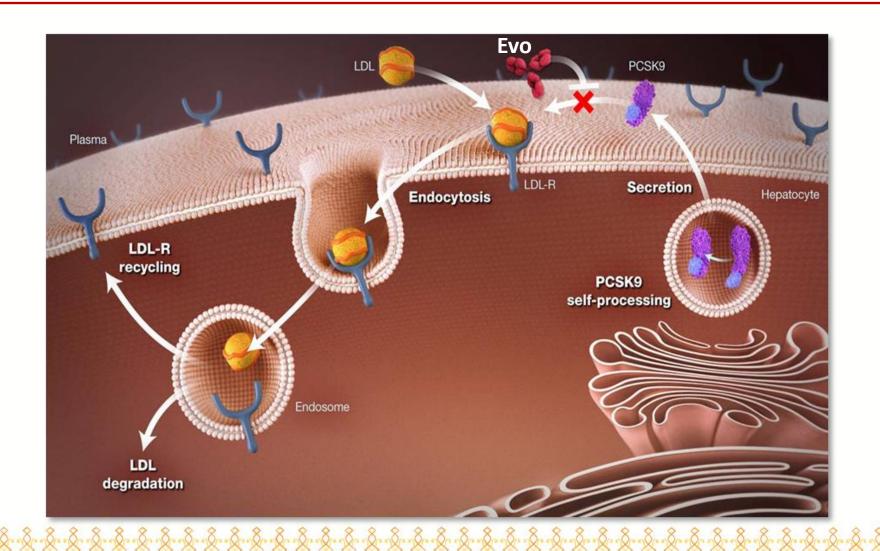
Background:

Proprotein convertase subtilisin/kexin Type 9 (PCSK9)

- Chaperones LDL-R to destruction → ↑ circulating LDL-C
- Loss-of-function genetic variants → ↑ LDL-R → ↓ LDL-C & ↓ risk of MI

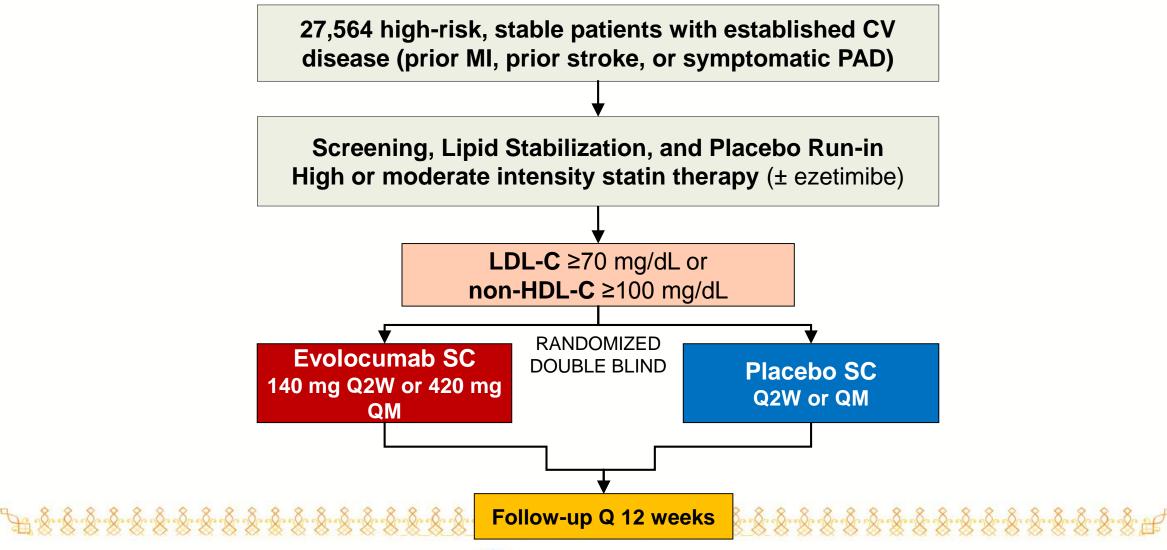

Evolocumab

- Fully human, Anti-PCSK mAb
- ~ 60 % **↓** LDL-C
- Safe well tolerated in Ph 2 & 3 studies
- Exploratory data suggests CV events



Background:

Background:


Objectives: FOURIER TRIAL

In patients with <u>established cardiovascular disease</u> <u>on statin</u> <u>therapy:</u>

- Test whether the addition of evolocumab <u>reduces the</u> <u>incidence of major cardiovascular events</u>
- Examine the <u>long-term safety & tolerability</u> of evolocumab
- Investigate the efficacy and safety of achieving unprecedented low levels of LDL-C

Trial Design

Endpoints

Efficacy

- Primary: <u>CV death, MI, stroke, hosp. for UA, or coronary revasc</u>
- Key secondary: <u>CV death, MI or stroke</u>

Safety

- AEs/SAEs
- Events of interest incl. muscle-related, new-onset diabetes, neurocognitive
- Development of anti-evolocumab Ab (binding and neutralizing)

TIMI Clinical Events Committee (CEC)


- Adjudicated all efficacy endpoints & new-onset diabetes
- Members unaware of treatment assignment & lipid levels

Trial Organization

Executive Committee

Marc S. Sabatine (Co-Chair) Terje R. Pedersen (Co-Chair)

Robert P. Giugliano Anthony C. Keech Peter S. Sever

TIMI Study Group

Stephen D. Wiviott (CEC Chair) Cheryl Lowe Leah Zahn

Marc P. Bonaca (Safety Chair) Polly Fish (Director of Ops) Tim Abrahamsen

Sabina Murphy (Director of Stats) Kelly Im (Assoc Dir Stats) Julia Kuder

Estella Kanevsky

Sponsor: Amgen

Scott M. Wasserman Narimon Honarpour Rob Scott
Armando Lira Pineda Kelly Hanlon Beat Knusel

Ransi Somaratne Christopher Kurtz Thomas Liu

Huei Wang

Independent Data Monitoring Committee

Charles H. Hennekens (Chair) Felicita Andreotti Colin Baigent

W. Virgil Brown Barry R. Davis John W. Newcomer

Sarah K. Wood

Lipid Monitoring Committee

John LaRosa (Chair) Benjamin Ansell Anders Olsson

Steering Committee & National Lead Investigators

Argentina

Alberto J. Lorenzatti

Australia

John Amerena

Austria

K. Huber & M. Rammer

Belgium

André Scheen

Brazil

José F.K. Saraiva

Bulgaria

Borislav G. Georgiev

Canada

Lawrence A. Leiter

Chile

Jorge L. Cobos

China

Lixin Jiang

Colombia

Jose L.A. Mendoza

Czech Republic

Richard Ceska

Denmark

H. Jensen & S. Wermuth

Estonia

Margus Viigimaa

Finland

Matti J. Tikkanen

France

François Schiele

Germany

I. Gouni-Berthold & T. Schäufele

Greece

Loukianos Rallidis

Hong Kong

Chung-Wah Siu

Hungary

Kalman Toth

Iceland

Gudmundur Thorgeirsson

India

P. Deedwania & V. Chopra

Ireland

Brendan McAdam

Israel

Basil S. Lewis

Italy

Gaetano M. De Ferrari

Japan

Atsushi Hirayama

Latvia

Andrejs Erglis

Lithuania

Jolita Badariene

Malaysia

Wan A. Wan Ahmad

Mexico

G. Gonzalez-Galvez

Netherlands

J. Wouter Jukema

New Zealand

Russell S. Scott

Norway

Terje R. Pedersen

Philippines

Gregorio G. Rogelio

Poland

Z. Gaciong & T. Pasierski

Portugal

Jorge Ferreira

Romania

Gheorghe A. Dan

Russia

Marat V. Ezhov

Singapore

Leslie Tay

Slovakia

Slavomíra Filipová

South Africa

Lesley Burgess

South Korea

Donghoon Choi

Spain

José López-Miranda

Sweden

L. Nilsson & A. Olsson

Switzerland

François Mach

Taiwan

Min-Ji Charna

Turkey

S. Lale Tokgozoglu

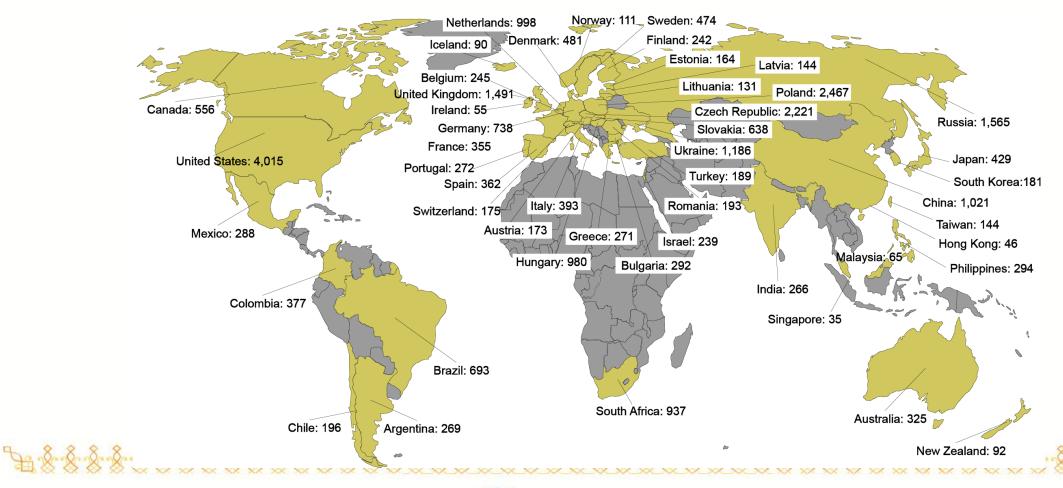
Ukraine

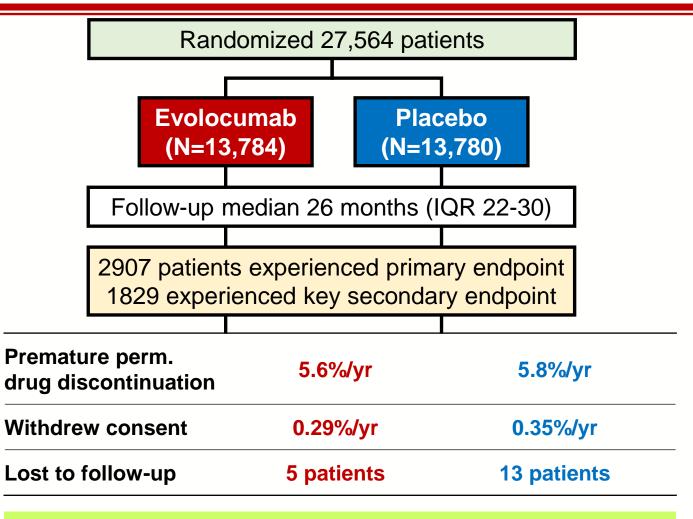
Oleg Kraydashenko

United Kingdom

P. Sever & D. Connolly

United States


Robert P. Giugliano


Global Enrollment

27,564 patients randomized at 1242 sites in 49 countries between 2/2013 – 6/2015

Follow-up

Ascertainment for primary endpoint was complete for 99.5% of potential patient-years of follow up

Baseline Characteristics

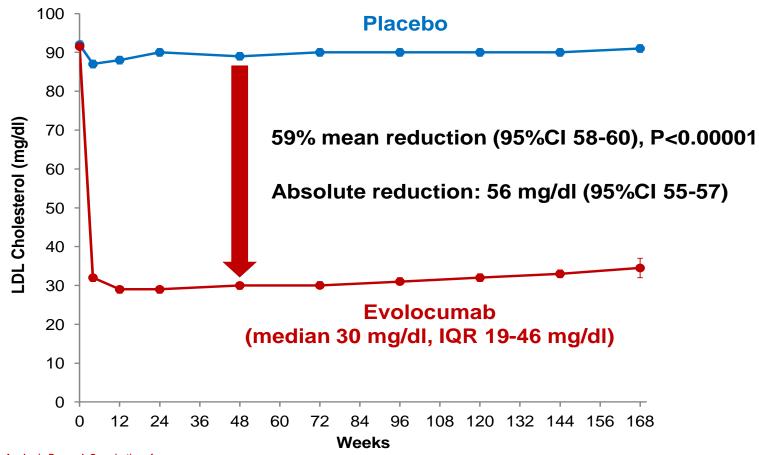
Characteristic	Value		
Age, years, mean (SD)	63 (9)		
Male sex (%)	75		
Type of cardiovascular disease (%)			
Myocardial infarction	81		
Stroke (non-hemorrhagic)	19		
Symptomatic PAD	13		
Cardiovascular risk factor (%)			
Hypertension	80		
Diabetes mellitus	37		
Current cigarette use	28		

Median time from most recent event ~3 yrs

Lipid Lowering Therapy & Lipid Levels at Baseline

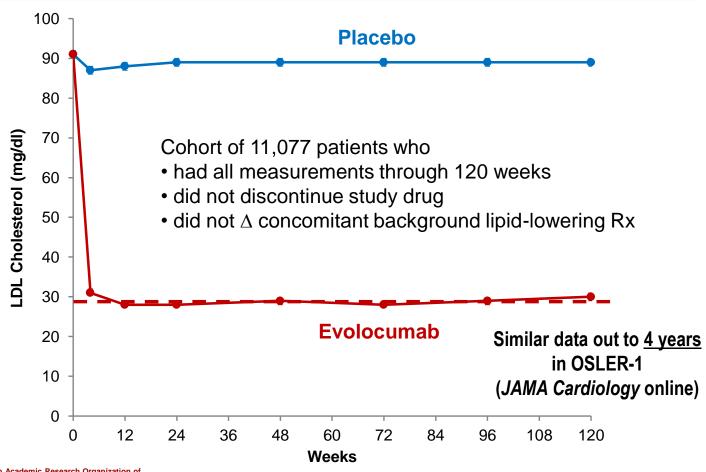
Characteristic	Value
Statin use (%)*	
High-intensity	69
Moderate-intensity	30
Ezetimibe use (%)	5
Median lipid measures (IQR) – mg/dL	
LDL-C	92 (80-109)
Total cholesterol	168 (151-189)
HDL-C	44 (37-53)

^{*}Per protocol, patients were to be on atorva ≥20 mg/d or equivalent.1% were on low intensity or intensity data were missing. Statin intensity defined per ACC/AHA 2013 Cholesterol Guidelines.

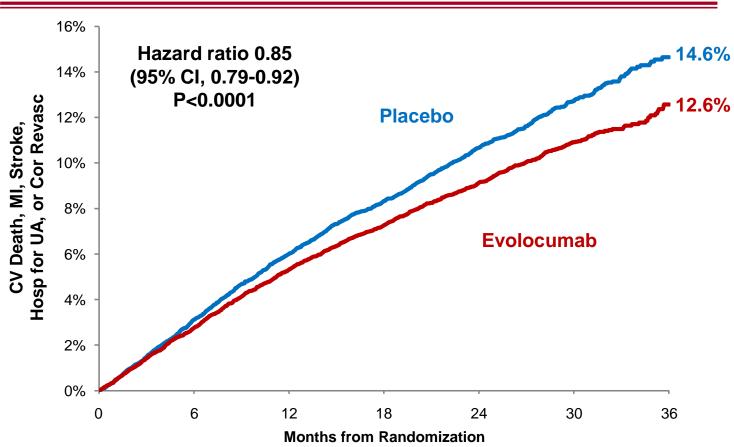


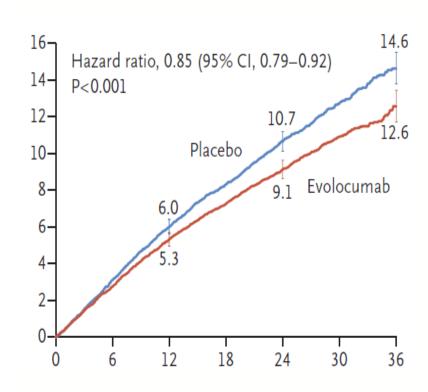
LDL Cholesterol

Low-Density Lipoprotein (LDL) Cholesterol Levels over Time.

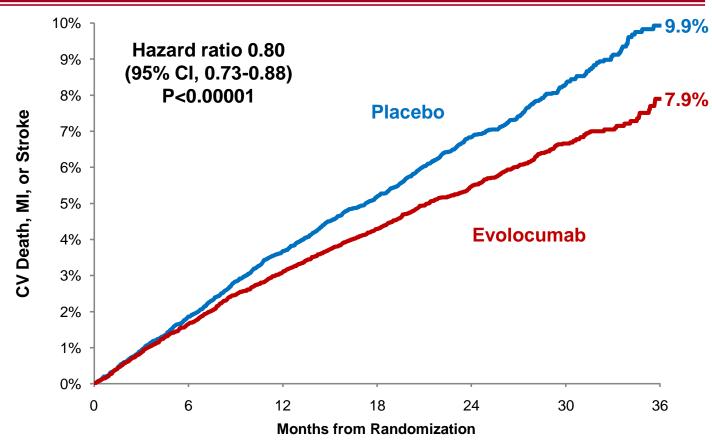


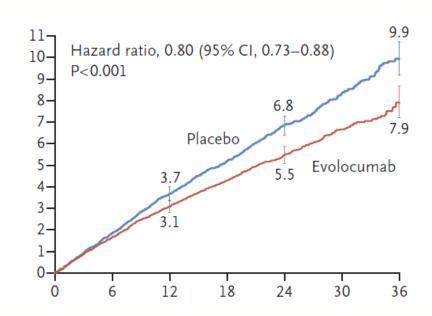
LDL Cholesterol





Primary Endpoint


Cumulative Incidence of Cardiovascular Events.



Key Secondary Endpoint

Types of CV Outcomes

Endpoint	Evolocumab (N=13,784)	Placebo (N=13,780)	HR (95% CI)
	3-yr Kaplan		
CV death, MI, or stroke	7.9	9.9	0.80 (0.73-0.88)
Cardiovascular death	2.5	2.4	1.05 (0.88-1.25)
Death due to acute MI	0.26	0.32	0.84 (0.49-1.42)
Death due to stroke	0.29	0.30	0.94 (0.58-1.54)
Other CV death	1.9	1.8	1.10 (0.90-1.35)
MI	4.4	6.3	0.73 (0.65-0.82)
Stroke	2.2	2.6	0.79 (0.66-0.95)

More Intensive LDL-C Lowering & CV Death

No clear benefit on CV mortality

of CV Deaths

Trial	Year	More Intensive Rx Arm	Less Intensive Rx Arm	HR (95% CI)
PROVE-IT TIMI 22	2004	27	36	0.74 (0.45-1.22)
A2Z	2004	86	111	0.76 (0.57-1.01)
TNT	2005	101	127	0.80 (0.61-1.03)
IDEAL	2005	223	218	1.03 (0.85-1.24)
SEARCH	2010	565	572	0.99 (0.88-1.11)
IMPROVE-IT	2015	538	537	1.00 (0.89-1.13)
Summary		1540	1601	0.96 (0.90-1.03)

0.2 0.5 1 2

More intensive therapy better

1 2

Less intensive therapy better

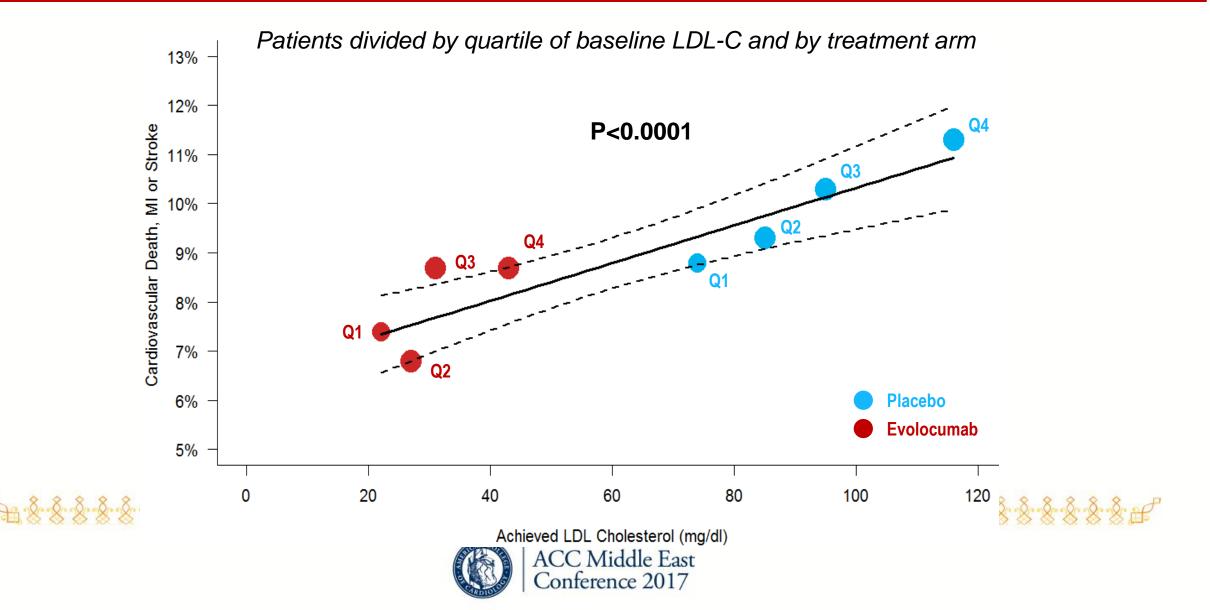
NEJM 2004;350:1495-504 JAMA 2004;292:1307-16 NEJM 2005;352:1425-35 JAMA 2005;294:2437-45 Lancet 2010;376:1658-69 NEJM 2015;372:2387-97

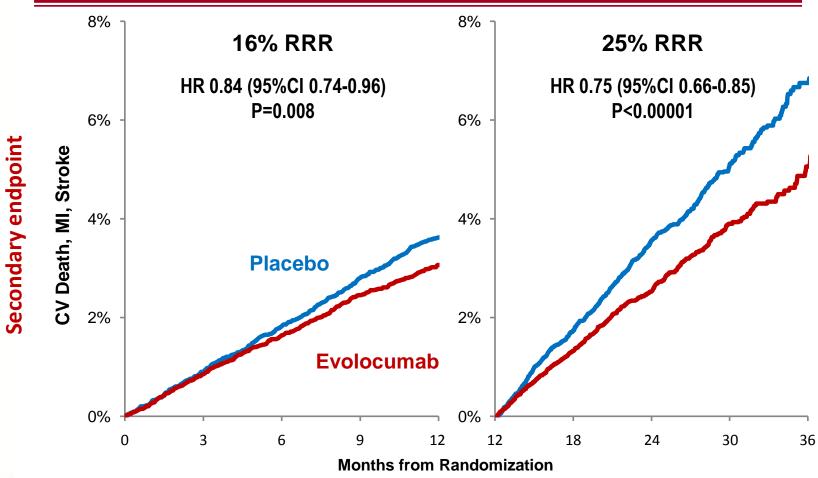
Types of CV Outcomes

Endpoint	Evolocumab (N=13,784)	Placebo (N=13,780)	HR (95% CI)	
	3-yr Kaplan	3-yr Kaplan-Meier rate		
CVD, MI, stroke, UA, or revasc	12.6	14.6	0.85 (0.79-0.92)	
CV death, MI, or stroke	7.9	9.9	0.80 (0.73-0.88)	
Cardiovascular death	2.5	2.4	1.05 (0.88-1.25)	
MI	4.4	6.3	0.73 (0.65-0.82)	
Stroke	2.2	2.6	0.79 (0.66-0.95)	
Hosp for unstable angina	2.2	2.3	0.99 (0.82-1.18)	
Coronary revasc	7.0	9.2	0.78 (0.71-0.86)	
Urgent	3.7	5.4	0.73 (0.64-0.83)	
Elective	3.9	4.6	0.83 (0.73-0.95)	
Death from any cause	4.8	4.3	1.04 (0.91-1.19)	

Key Subgroups

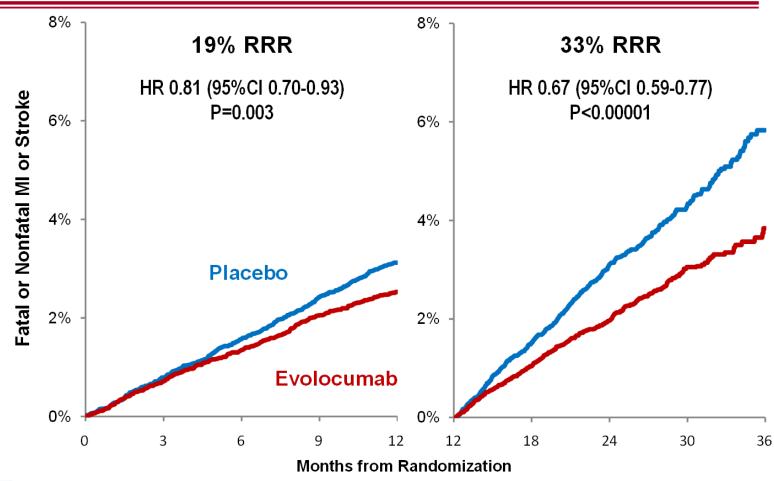
<u>Subgroup</u>	<u>Patients</u>	PEP HR (95% CI)	Key S	EP HR (9	95% CI)
Overall	27564	♦			•	
Type of disease						
MI alone	19113	<u>+</u>			+	
Stroke alone	3366			_		
PAD alone	1505				-	
Polyvascular disease	3563				-	
Baseline LDL-C						
Q1 (<80 mg/dl)	6961			-	_	
Q2 (80-<92 mg/dl)	6886	-		-	<u> </u>	
Q3 (92-109 mg/dl)	6887	-		•	<u> </u>	
Q4 (>109 mg/dl)	6829	-			-	
Baseline statin intensity						All P _{interactions} NS
High	19103	-			-	interactions "
Not high	8461	-=-		-		
Ezetimibe						
Yes	1440		_		= :-	
No	26124	+			+	
Initial Dosing Regimen						
Every 2 weeks	24774	<u> </u>			<u></u>	
Monthly	2790			_	<u> </u>	
•		+	+	+		+
An Academic Research Organization of		0.4 1.0 EvoMab better	2.5 Pbo better	0.4 EvoMab be	1.0	2.5 oo better
Brigham and Women's Hospital and Harvard I	viedicai School	EVOINAN NELLEI	i no netter	LV UIVIAU DE	cuoi Pl	אס אפונפו




Lower LDL-C Is Better

Landmark Analysis

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

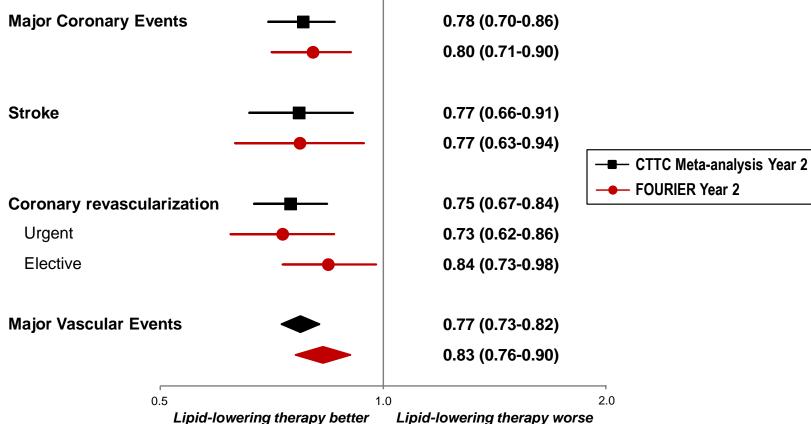


Fatal or Nonfatal MI or Stroke

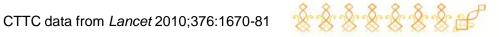
Comparison to Cholesterol Treatment Trialists Collaboration

Hazard Ratio (95% CI) per 1 mmol/L reduction in LDL-C **Major Coronary Events** 0.78 (0.70-0.86) **Stroke** 0.77 (0.66-0.91) ── CTTC Meta-analysis Year 2 **Coronary revascularization** 0.75 (0.67-0.84) **Major Vascular Events** 0.77 (0.73-0.82) 0.5 2.0 Lipid-lowering therapy worse Lipid-lowering therapy better

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical Scho CTTC data from Lancet 2010;376:1670-81



Comparison to Cholesterol Treatment Trialists Collaboration


Hazard Ratio (95% CI) per 1 mmol/L reduction in LDL-C

Safety

	Evolocumab (N=13,769)	Placebo (N=13,756)
Adverse events (%)		
Any	77.4	77.4
Serious	24.8	24.7
Allergic reaction	3.1	2.9
**Injection-site reaction	2.1	1.6
Treatment-related and led to d/c of study drug	1.6	1.5
Muscle-related	5.0	4.8
Cataract	1.7	1.8
Diabetes (new-onset)	8.1	7.7
Neurocognitive	1.6	1.5
Laboratory results (%)		
Binding Ab	0.3	n/a
Neutralizing Ab	none	n/a

New-onset diabetes assessed in patients without diabetes at baseline; adjudicated by CEC

*****#

Summary for Evolocumab

• ↓ LDL-C by 59%

- Consistent throughout duration of trial
- Median achieved <u>LDL-C of 30 mg/dl (IQR 19-46 mg/dl)</u>

↓ CV outcomes in patients already on statin therapy

- 15% ↓ broad primary endpoint; 20% ↓ CV death, MI, or stroke
- Consistent benefit, incl. in those on high-intensity statin, low LDL-C
- 25% reduction in CV death, MI, or stroke after 1st year
- Long-term benefits consistent w/ statins per mmol/L ↓ LDL-C

Safe and well-tolerated

- Similar rates of AEs, incl DM & neurocog events w/ EvoMab & pbo
- Rates of EvoMab discontinuation low and no greater than pbo
- No neutralizing antibodies developed

Conclusions:

In patients with known cardiovascular disease:

- PCSK9 inhibition with evolocumab significantly & safely ↓ major cardiovascular events when added to statin therapy
- 2. Benefit was achieved with lowering LDL cholesterol well below current targets

Additional Details

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease

Marc S. Sabatine, M.D., M.P.H., Robert P. Giugliano, M.D., Anthony C. Keech, M.D., Narimon Honarpour, M.D., Ph.D., Stephen D. Wiviott, M.D., Sabina A. Murphy, M.P.H., Julia F. Kuder, M.A., Huei Wang, Ph.D., Thomas Liu, Ph.D., Scott M. Wasserman, M.D., Peter S. Sever, Ph.D., F.R.C.P., and Terje R. Pedersen, M.D., for the FOURIER Steering Committee and Investigators*

ARS Question 1

In meta-analyses, a 40 mg/dL reduction in LDL-C decreases major CV events by:

- A. 10%
- B. 23%
- C. 30%
- D. 36%

In meta-analyses, a 40 mg/dL reduction in LDL-C decreases major CV events by:

- A. 10%
- B. 23%
- C. 30%
- D. 36%

ARS Question 2

Which statement is true about the PCSK9 protein?

- A. The protein is produced in the LDL particle
- B. Overactivity mutations lead to low LDL levels in the blood
- C. Binding of PCSK9 to LDL receptors causes receptor degradation
- D. Genetic mutations of PCSK9 have not been found

Which statement is true about the PCSK9 protein?

- A. The protein is produced in the LDL particle
- B. Overactivity mutations lead to low LDL levels in the blood
- C. Binding of PCSK9 to LDL receptors causes receptor degradation
- D. Genetic mutations of PCSK9 have not been found

Is there incremental risk reduction from add-on therapy to optimal statin use?

Completed trials:

ACCORD: T2DM; statin vs statin + fenofibrate

AIM HIGH and HPS 2 THRIVE: statin vs ER niacin or ERN/ laropiprant

• Trials in progress:

IMPROVE IT:

Post ACS; statin vs statin +

ezetimibe

CETPi + statin vs statin (REVEAL,

ACCELERATE)

EPA omega-3 + statin vs statin (REDUCE IT)

Anti-PCSK9 + statin vs statin (ODYSSEY, FOURIER)

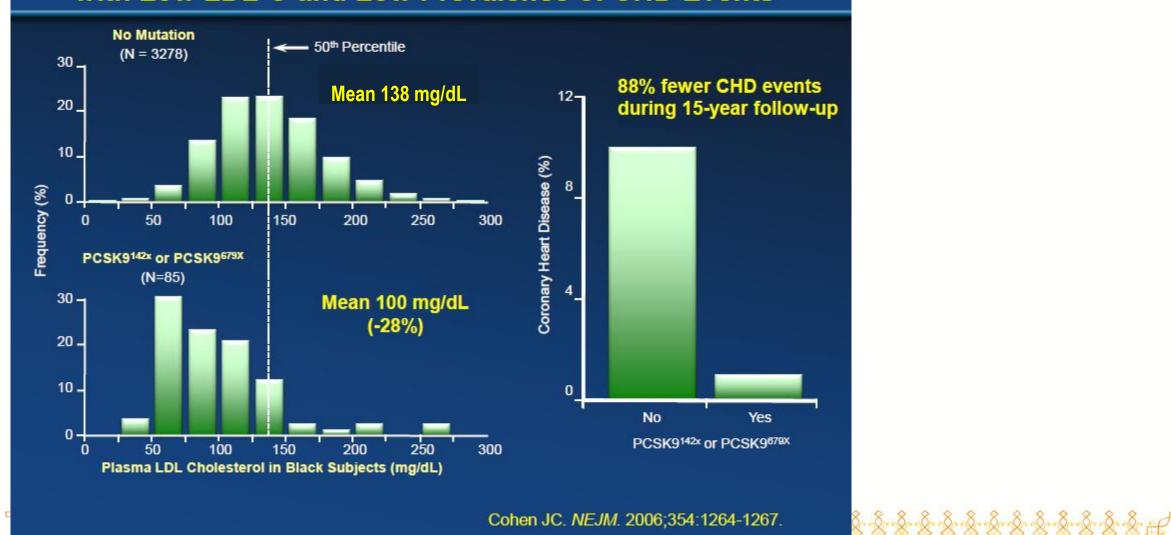
Background: Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9)

- 9th member of family of secretory serine proteases; involved specifically in degradation of LDL Receptor
- Loss of function mutations are associated with lifelong low LDL-C levels and decreased risk of cardiovascular disease
- Gain of function mutations are associated with lifelong high LDL-C levels and increased risk of cardiovascular disease

Inclusion criteria: FOURIER TRIAL

Clinical ASCVD and at least 1 major risk factor

(age > 65 years, prior MI or non-hemorrhagic stroke, current cigarette smoking, symptomatic PAD with prior MI or stroke)


OR

• 2 minor risk factors

(history of non-MI-related coronary revascularization, residual coronary artery disease with \$40% stenosis in >2 large vessels, HDL-C <40 mg/dL for men and <50 mg/dL for women, hs-CRP >2 mg/L, or metabolic syndrome)

Loss-of-Function PCSK9 Mutations in AA Are Associated with Low LDL-C and Low Prevalence of CHD Events

Mutations were associated with a 28 percent reduction in mean LDL cholesterol and an 88 percent reduction in the risk of CHD