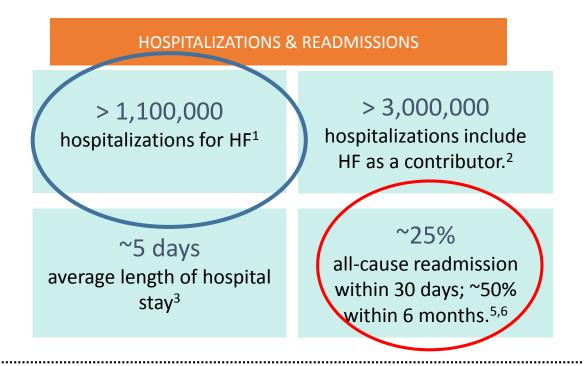
The role of remote monitoring in preventing readmissions after acute heart failure


October 20, 2017

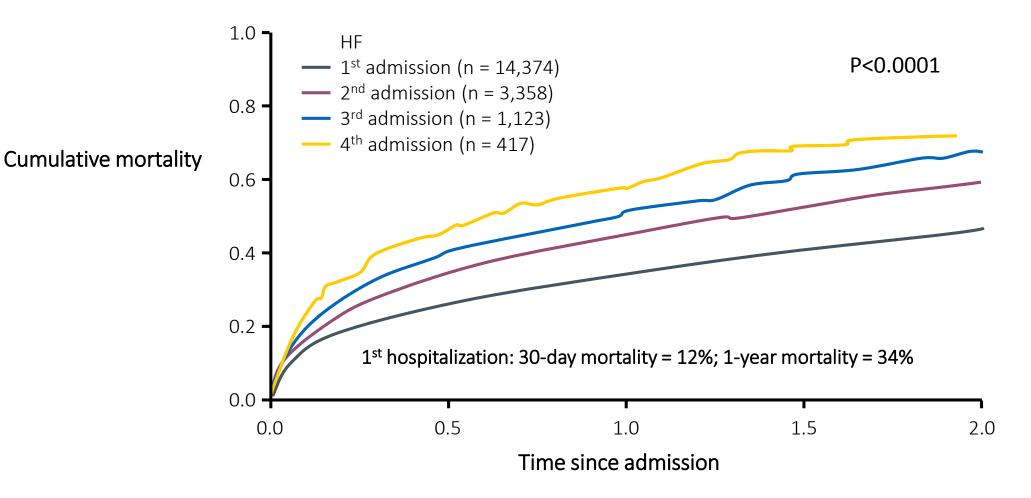
Randall C Starling MD MPH FACC FAHA FESA FHFSA
Professor of Medicine
Kaufman Center for Heart Failure
Heart and Vascular Institute
Cleveland Clinic
Cleveland Ohio USA

USA Burden of Heart Failure

Despite advances in medical therapies to treat heart failure, the hospitalization rate has not changed significantly from 2000. As a result, heart failure continues to be a

MAJOR DRIVER OF OVERALL HEALTH CARE COSTS.

- 1.CDC NCHS National Hospital Discharge Survey, 2000-10. 5. Krumholz HM, et al. Circ Cardiovas Qual Outcomes 2009.
- 2. Blekcer et al. JACC, 2013.


6. Wexler DJ, et al. Am Heart J, 2001.

- 3. Yancy et al. JACC, 2006.
- 4. Yancy CW, et al. Circulation, 2013.

^{*}Study projections assumes HF prevalence remains constant and continuation of current hospitalization practices

HF-Hospitalization is a Significant Event

Progressive decrease in survival with each subsequent HF admission

Congestion status at discharge

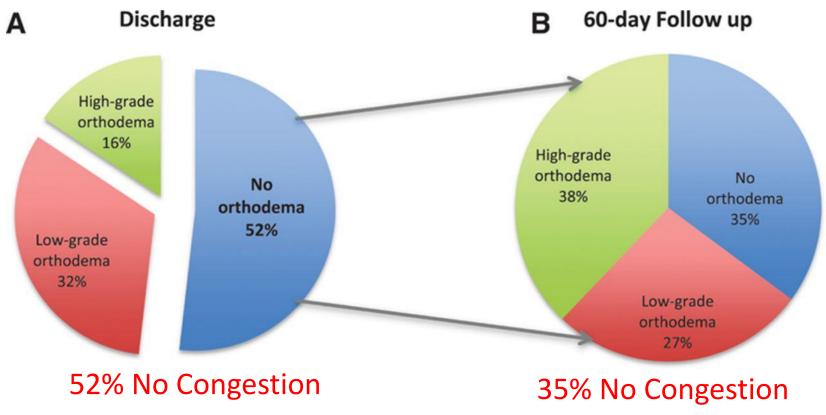


Table 2. Orthodema Scores

Mild edema, no orthopnea	0	No congestion
Moderate edema, no orthopnea Severe edema OR orthopnea	1	Low-grade orthodema/congestion
Moderate edema and orthopnea Severe edema and orthopnea	3 4	High-grade orthodema/congestion

60 day Event Rates Based on congestion status at discharge

"Weight loss did not consistently correlate congestion status as measured by orthodema"

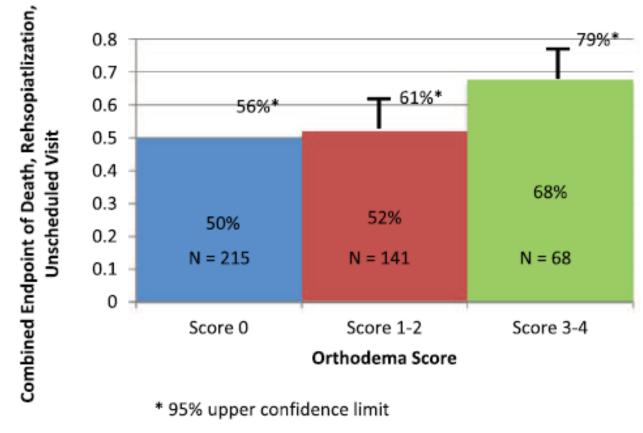
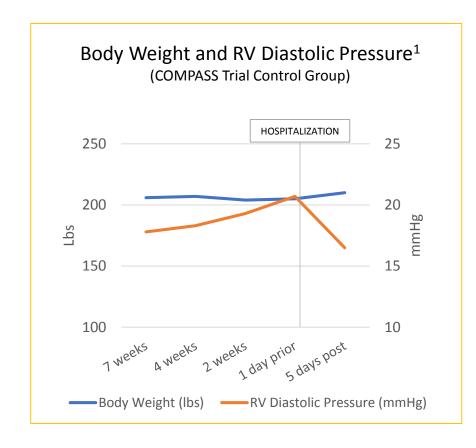



Figure 3. Sixty-day event rates based on discharge orthodema score to represent congestion (*P*=0.038).

Weight Gain

Weight Gain	Sensitivity	Specificity
2 kg weight gain over 48-72 hrs ²	9%	97%
2% weight gain over 48-72 hrs ²	17%	94%
3 lbs in 1 day or 5 lbs in 3 days ³	22.5%	-

NO CORRELATION

Daily weights do not correlate with filling pressures.

- 1. Data based on Zile MR, et al. Circulation, 2008.
- 2. Lewin J. et al. Eur J HF 2005.
- 3. Abraham WT. et al. Cong Heart Failure. 2011.

Clinical Examination

N = 366 Advanced Chronic HF patients, mean LVEF 25% \pm 7

Variable	Estimate	Sensitivity	Specificity	PPV	NPV
	of	(%)	(%)	(%)	(%)
JVP	RAP	48	78	60	69
Edema		10	94	55	60
Pulse Press	Cardiac Index	27	69	52	44
S3	PCWP	36	81	69	54
Dyspnea		50	73	67	57
Rales		13	90	60	48

RESULTS

Data from clinical evaluations has poor sensitivity and predictive value in determining hemodynamic profile. Clinical examination has

LIMITED RELIABILITY

in assessing filling pressures.

Clinical Surrogates of Rising Filling Pressures

Parameter	Surrogate for:
Symptoms (PND, orthopnea, etc.)	LVEDP, RAP
JVP	RAP
HJR	RAP
S3	LVEDP
Rales	LVEDP
Daily weight	Body volume (LVEDP, RAP)
BNP	PCWP
Intrathoracic impedance	PCWP
Heart rate variability	Cardiac autonomic control

THE GOAL:

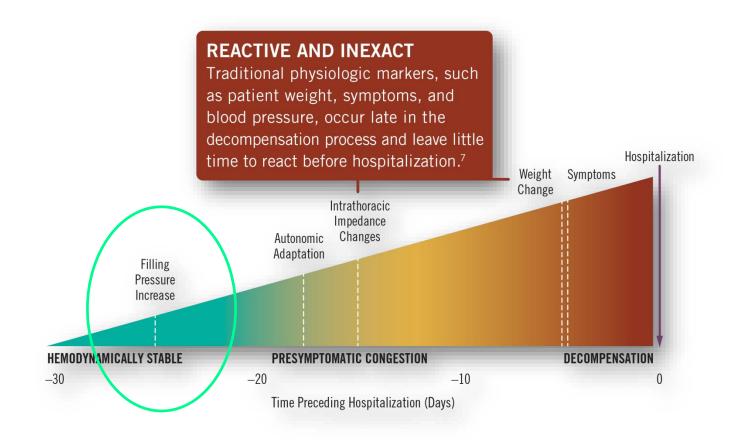
Predict gradual decompensation leading to acute decompensation.

Impact of Clinical Surrogates on Hospitalizations

Trial	N	Parameter Monitored/ Clinician Interaction	Impact on HF Hospitalization		Citation The NEW ENGLAND JOURNAL of MEDICINE
TELE-HF ¹	1,653	Signs/symptoms, daily weights	None	2010	Circulation
TIM-HF ²	710	Signs/symptoms, daily weights	None	2011	
TEN-HMS ³	426	Signs/symptoms, daily weights, BP, nurse telephone support	None	2005	American
BEAT-HF ⁴	1,437	Signs/symptoms, daily weights, nurse communications	None	2015 Abstract	Heart Association
INH ⁵	715	Signs/symptoms, telemonitoring, nurse coordinated DM	None	2012	Circulation Heart Fallure
DOT-HF ⁶	335	Intrathoracic impedance with patient alert	Increased	2011	Circulation
Optilink ⁷	1,002	Intrathoracic impedance	None	2011	Heart Failure
REM-HF ⁸	1,650	Remote monitoring via ICD, CRT-D, or CRT-P	None	2016 Abstract	EUROPEAN SOCIETY OF CARDIOLOGY®
MORE CARE ⁹	865	Remote monitoring of advanced diagnostics via CRT-D	None	2016	Heart Failure Heart failure

- 1. Chaudhry SI, N Engl J Med, 2010.
- 2. Koehler F, Circulation, 2011.
- 3. Cleland JG, JACC, 2005.

Total


8,793

- 4. Ong MK, AHA 2015 LBCT.
- 5. Angermann DE, Circ Heart Fail, 2012.
- 6. van Veldhuisen DJ, Circ 2011.
- 7. Bohm, M. Eur J. Heart Fail, 2011.
- 8. Cowie, MR. ESC 2016.
- 9. Boriani G, Eur J Heart Fail. 2016.

Multiple trials studying > 8,500 patients have demonstrated that current markers have

NO IMPACT ON HF HOSPITALIZATION.

Why Are These Parameters Ineffective?

Progressive Rise in Filling Pressures Leads to Hospitalization

Transition from Chronic Compensated to Acute Decompensated HF

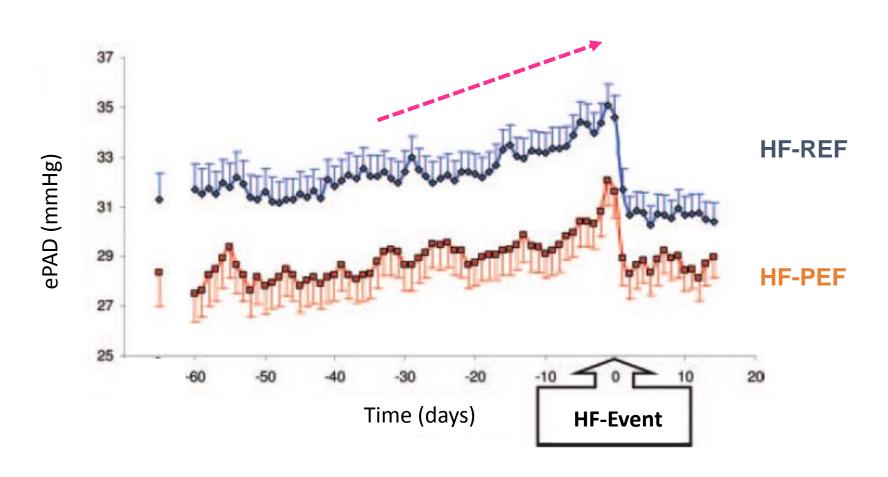
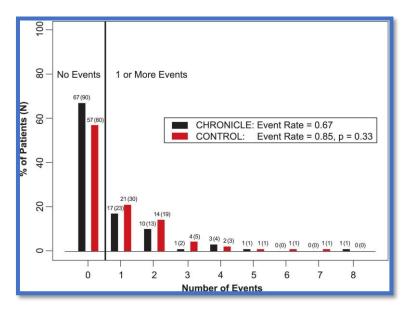
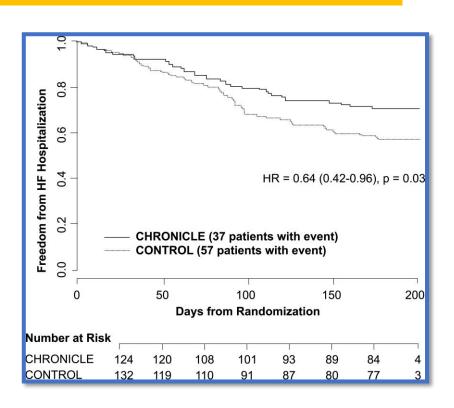
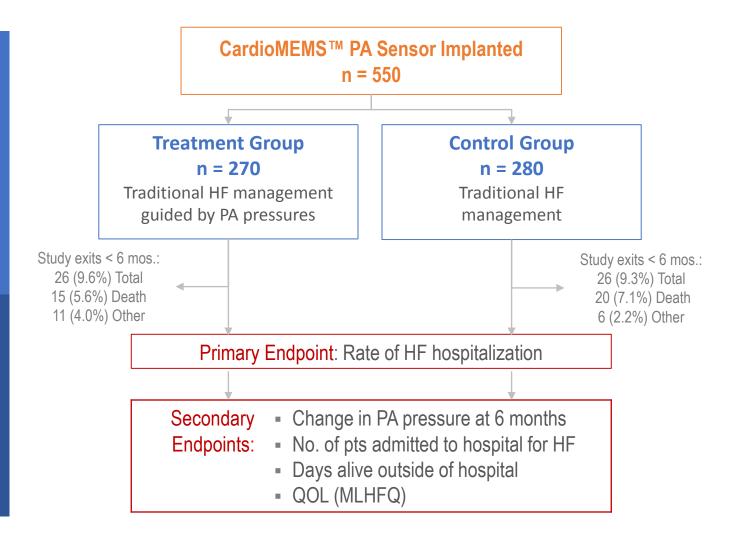




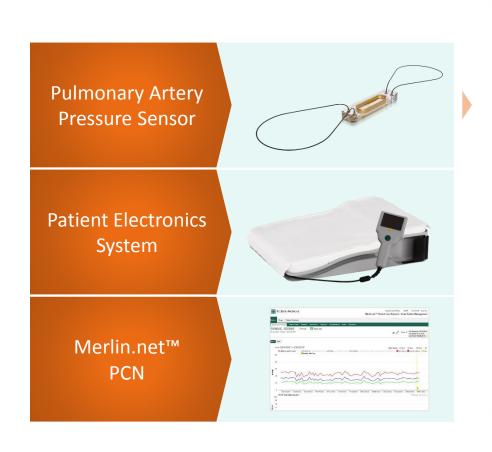
Table 1 Characteristics of the five studies identified using implantable haemodynamic monitoring technology to guide heart failure management CHAMPION COMPASS-HF REDUCEhf Study details Chronicle HOMEOSTASIS $(n = 550)^{21-24}$ $(n=274)^{25}$ Feasibility $(n=40)^{28}$ $(n = 400)^{30}$ $(n=32)^{27}$ Published 2003 2005-2008 2007-2009 2003-2004 Published 2011 Years of study Study type Prospective, Prospective, Prospective, Prospective, Prospective, single-blinded, single-blinded, single-blinded, observational observational, open 5 Trials, 1296 Chronic HF patients, permanently implanted sensors Device SIGNIFICANT IMPACT ON HF HOSPITALIZATIONS ous 38% [HR 0.62] reduction in HF events monitor monitor NYHA class $\parallel - \parallel \parallel$ II-IIIIII-IV III–IV Previous None None At least 1 HFH in the At least 1 HFH in the At least 1 HFH in the hospitalization previous 12 months previous 12 months previous 6 months requirement Target pressures with Target pressures with 'Optivolaemic' ranges 'Optivolaemic' ranges Treatment None medication change medication change without medication without medication recommendations suggestions suggestions change change recommendation recommendation Average follow-up 17 months 25 months 18 months 6 months 12 months HFH^b Death or HFHa HFH HFH HFE Endpoint

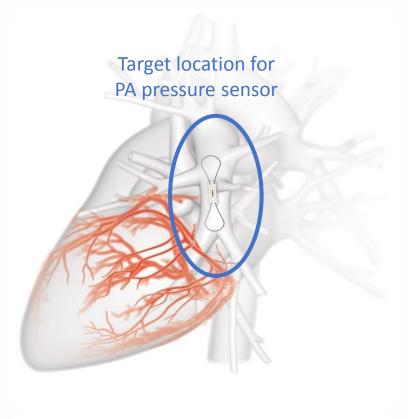
COMPASS-HF (n=274 [n=134 device, n=140 control])

Did not significantly reduce total HFrelated events but was associated with a 36% RRR in HF-hospitalization

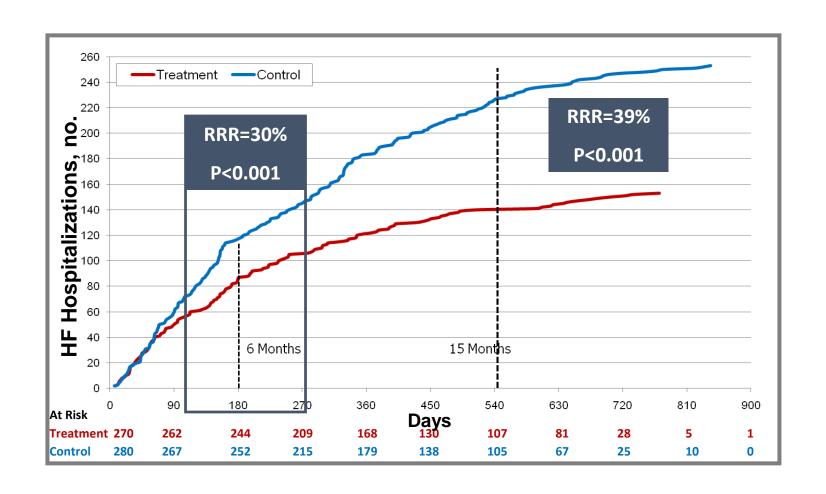

CHAMPION (n=550)

PURPOSE

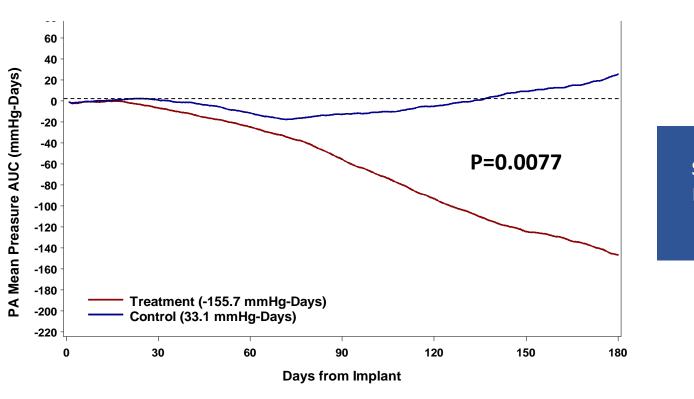

Evaluate the safety and efficacy of the CardioMEMS™ HF System in reducing HF related hospitalizations in NYHA class III heart failure patients.


Treatment group managed to target PA pressures:

Systolic 15 – 35 mmHg Diastolic 8 – 20 mmHg Mean 10 – 25 mmHg



Cardiomems™ HF System



CHAMPION (n=550)

CHAMPION (n=550)

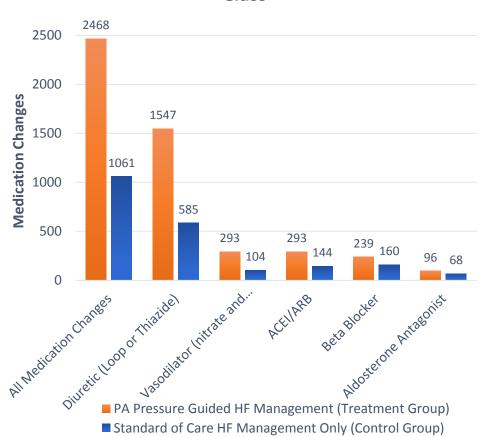
Systolic 15 – 35 mmHg Diastolic 8 – 20 mmHg Mean 10 – 25 mmHg

By targeting PA pressure ranges and titrating medications, mean PA pressure was significantly reduced over time.

CHAMPION (n=550)

		Treatment (n = 270)	Control (n = 280)	P-value
Safety Endpoints	Device-related or system-related complications	3 (1%)	3 (1%)	
		Total 8	< 0.0001	
	Pressure-sensor failures	0	0	< 0.0001
Secondary Endpoints	Change from baseline in PA mean pressure (mean AUC [mm Hg x days])	-156	33	0.008
	Number and proportion of patients hospitalized for HF (%)	55 (20%)	80 (29%)	0.03
	Days alive and out of hospital for HF (mean ± SD)	174.4 ± 31.1	172.1 ± 37.8	0.02
	Quality of life (Minnesota Living with Heart Failure Questionnaire, mean ± SD)	45 ± 26	51±25	0.02

ALL ENDPOINTS MET.


Both primary safety endpoints and all secondary endpoints were met at 6 months

PA Pressure-Driven Treatment Changes

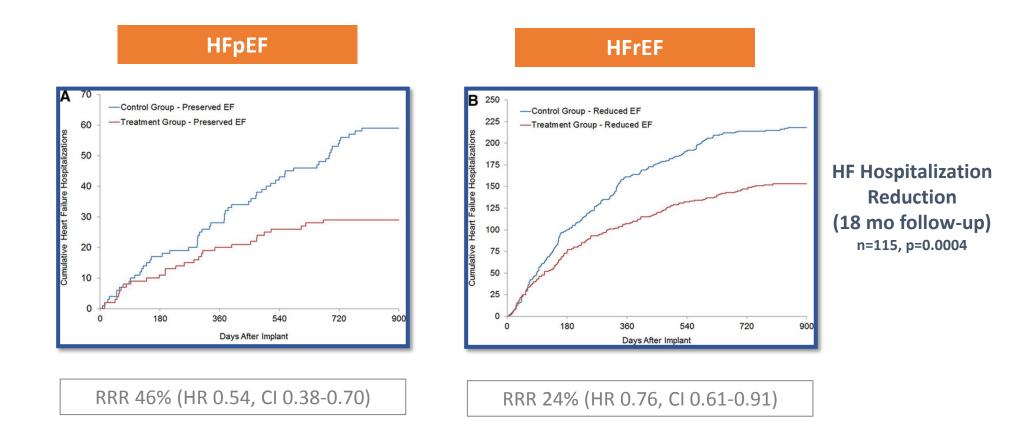
PURPOSE

Analyze medical therapy data from the CHAMPION trial to determine which interventions were linked to decreases in HF hospitalizations during PA pressure guided management.

Frequency of Medication Changes by Drug Class

RESULTS

- Significantly more changes in medication doses in the Treatment Group than in the Control Group.
- Diuretics were the most frequently adjusted medication and the changes were significantly higher in the Treatment Group.



Medication changes based on PA pressure information were more effective in reducing HF hospitalizations than using signs & symptoms alone.

HFpEF pts made up 22% of the trial cohort

PURPOSE

Evaluate the effect of PA pressure-guided therapy with the CardioMEMS^{\dagger} HF System in patients with preserved ejection fraction (EF \geq 40%), a group with no clinically proven therapies.

Vol. 61, No. 13, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2012.12.022

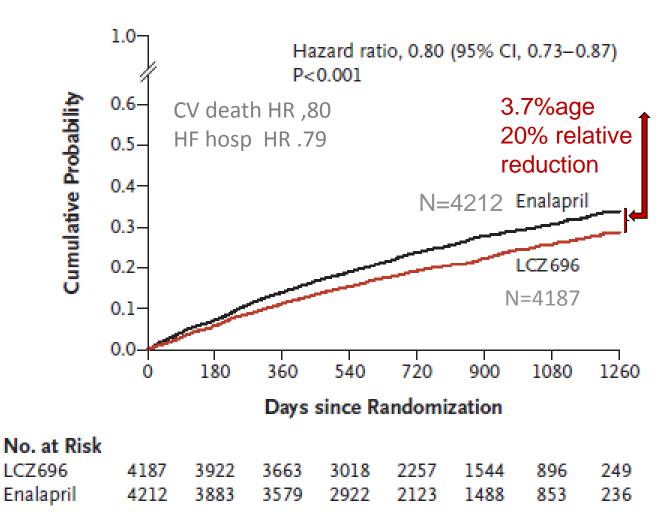
Heart Failure

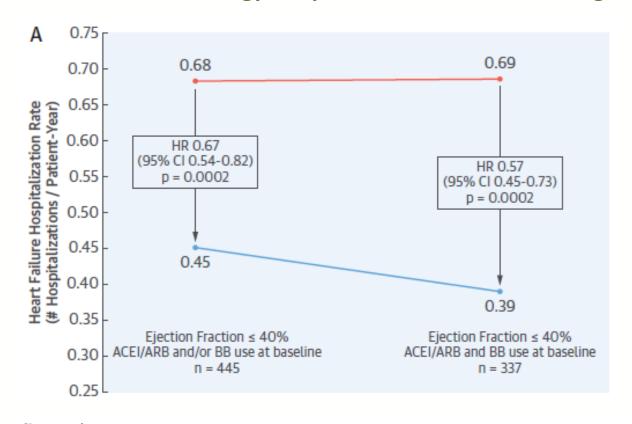
Incremental Cost-Effectiveness of Guideline-Directed Medical Therapies for Heart Failure

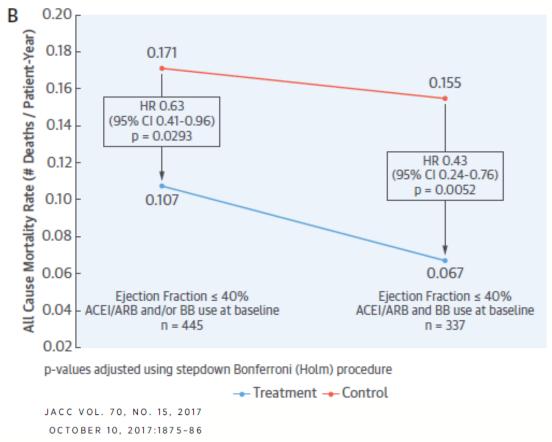
Gaurav Banka, MD,* Paul A. Heidenreich, MD,† Gregg C. Fonarow, MD*

Los Angeles and Palo Alto, California

Our analysis demonstrates that medical treatment of HFrEF is highly cost-effective and may even result in cost-savings. Greater efforts to ensure optimal adherence to guideline-directed medical therapy for HFrEF are warranted. (J Am Coll Cardiol 2013;61:1440-6) © 2013 by the American College of Cardiology Foundation






PARADIGM-HF: Cardiovascular Death or Heart Failure Hospitalization (Primary Endpoint)

Pulmonary Artery Pressure Guided Management of HF rEF Incremental Benefit with GDMT

Need to Validate Strategy of Optimal Neurohormonal Antagonists COMBINED with PA Pressure Guided Treatment

Givertz et al.

PA Pressure-Guided HF Management on Top of GDMT

Summary

- Congestion is a key predictor of HF events
- Typical clinical parameters do not accurately assess congestion
- Hemodynamic Guided treatment is the <u>only remote monitoring</u> technique shown to reduce HF admissions
- GDMT and PA pressure guided therapy appear to have a synergistic impact on HF outcomes
- Validation studies demonstrating the clinical impact of PA pressure guided therapy and BEST GDMT are necessary
- The VALUE added impact of PA guided treatment will be essential to demonstrate

