# Bioresorbable Scaffolds Moving Forward or Backwards?

George D. Dangas, MD, FACC, MSCAI
Professor of Cardiology & Vascular Surgery
Icahn School of Medicine at Mount Sinai
New York, NY

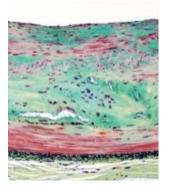
# Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse have had a financial interest/arrangement or affiliation with the organization(s) listed below in relation this topic.

Affiliation/Financial Relationship

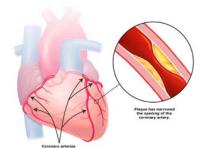
Consulting Fees or Speaker Honoraria

Company


Abbott Vascular

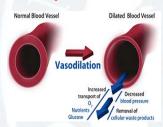


#### Potential Unique Benefits of BioResobableScaffolds


#### **CELLS**

- SMC differentiation to contractile phenotype through mechanotransduction
- Endothelium lined tissue coverage that responds to stimuli

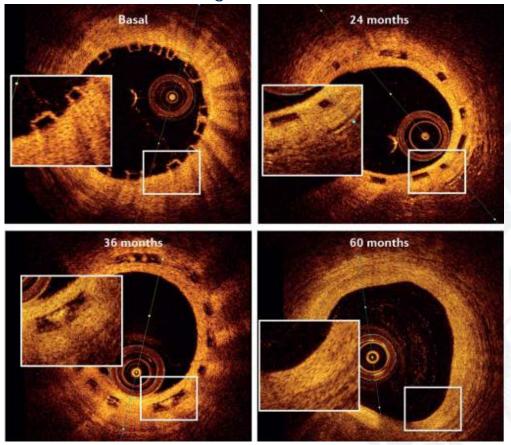



#### **PATIENT**

- Stabilization of target lesion events (plaque capping)
- Recovery/preservation of epicardial-mediated portion of coronary flow reserve (remodeling/vasomotion)



#### **VESSEL**


- Vessel remodeling allowed in the absence of metallic caging
- Vasomotion recovered through functional cellular tissue formation (mechanotransduction)
- Plaque capping with a "neointima" of ~ 200 μm
- Plaque reduction





#### **Evolution of Vascular Remodeling**

As Assumed/Imagined from Animal Models





Indolfi C, De Rosa S, Colombo A. Nat Rev Cardiol. 2016 Dec;13(12):719-729



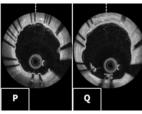
# Efficacy & safety comparable to DES • ABSORB III

- ABSORB Japan
- ABSORB China
- ABSORB-FIRST
- GHOST EU
- ABSORB II
- ASSURE
- PRAGUE-19

- FDA issued a safety alert warning
- Abbott restricts use of Absorb BVS will only in clinical registry settings



Healing


best DES

TROFIII

comparable to

ESTROFA-BVS





Higher risk of Scaffold Thrombosis in aggregate data:

- Cassese et al
- Stone et al
- Lipinski et al

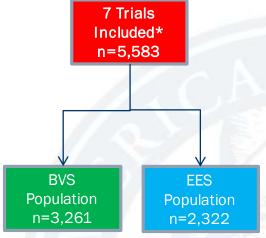
Lower Efficacy & Safety comparable to DES

2 Years

- ABSORB III
- ABSORB Japan
- AIDA
- ABSORB II

#### Aggregate Data:

- Toyota et al
- · Sorrentino et al
- Collet et al




#### Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents

Sabato Sorrentino, MD, <sup>a,b</sup> Gennaro Giustino, MD, <sup>a</sup> Roxana Mehran, MD, <sup>a</sup> Anapoorna S. Kini, MD, <sup>a</sup> Samin K. Sharma, MD, <sup>a</sup> Michela Faggioni, MD, <sup>a,c</sup> Serdar Farhan, MD, <sup>a</sup> Birgit Vogel, MD, <sup>a</sup> Ciro Indolfi, MD, <sup>b,d</sup> George D. Dangas, MD, PhD<sup>a</sup>

- Selected studies: Randomized Clinical Trials (RCTs) in which bioresorbable vascular scaffolds were compared to the best in class everolimus eluting stent
- Median time of follow-up was 2 years (range 2 to 3 years).

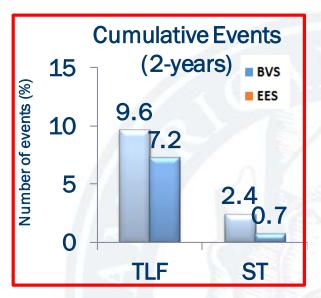




The primary endpoints were:

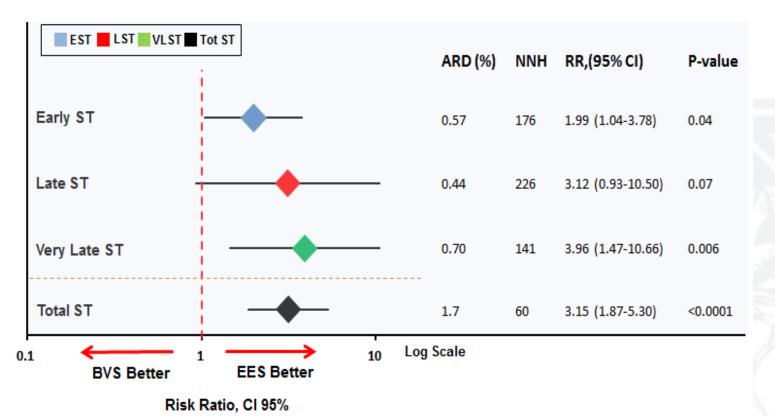
- target lesion failure and
- definite/probable thrombosis




#### AbsorbBVS 7 trial Meta-Analysis Primary Outcomes

#### Target Lesion Failure

|                         | BVS EES      |               |            | Risk Ratio | Risk Ratio              |                     |            |                     |               |
|-------------------------|--------------|---------------|------------|------------|-------------------------|---------------------|------------|---------------------|---------------|
| Study or Subgroup       | Events       | Total         | Events     | Total      | Weight                  | M-H, Random, 95% CI | M-H, Rand  | M-H, Random, 95% CI |               |
| ABSORB China            | 10           | 238           | 11         | 237        | 4.9%                    | 0.91 [0.39-2.09]    | _          | -                   |               |
| ABSORB II               | 34           | 335           | 8          | 166        | 6.1%                    | 2.11 [1.00-4.45]    |            | -                   |               |
| ABSORB III              | 143          | 1322          | 53         | 686        | 37.5%                   | 1.40 [1.04-1.89]    |            | -                   |               |
| ABSORB Japan            | 19           | 266           | 5          | 134        | 3.7%                    | 1.91 [0.73-5.01]    | -          | <del></del>         |               |
| AIDA                    | 91           | 924           | 78         | 921        | 40.9%                   | 1.16 [0.87-1.55]    |            | -                   |               |
| EVERBIO II              | 14           | 78            | 9          | 80         | 5.6%                    | 1.60 [0.73-3.47]    | -          | <del></del>         |               |
| TROFI II                | 3            | 95            | 3          | 96         | 1.4%                    | 1.01 [0.21-4.88]    |            |                     |               |
| Total (95% CI)          |              | 3258          |            | 2320       | 100.0%                  | 1.32 [1.10-1.59]    |            | <b>•</b>            |               |
| Total events            | 314          |               | 167        |            |                         |                     |            |                     |               |
| Heterogeneity: Tau2 =   | 0.00; Chi    | $^{2} = 4.09$ | , df = 6 ( | P = 0.6    | 6); I <sup>2</sup> = 0% | . —                 |            | +                   | $\overline{}$ |
| Test for overall effect | : Z = 2.96 ( | P = 0.0       | 03)        |            |                         | 0.02                | 0.1        | 1 10                | 50            |
|                         |              |               |            |            |                         |                     | Favors BVS | Favors EES          |               |

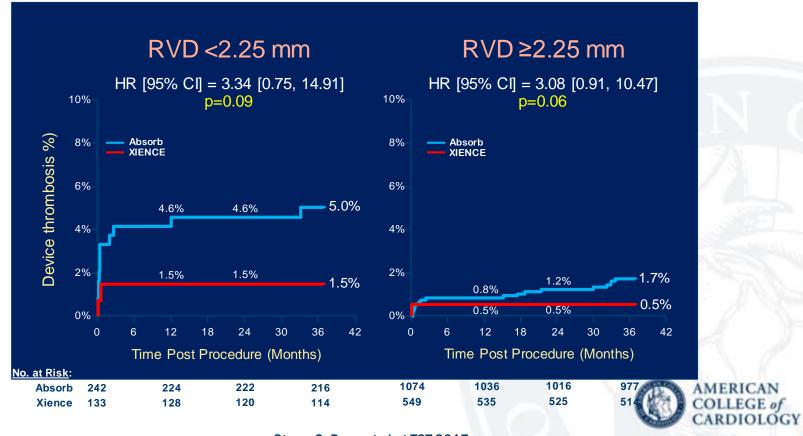

#### Definite or Probable Scaffold/Stent Thrombosis (ST)

|                         | BVS          | ,             | EES    |          |                         | Risk Ratio          | Risk Ratio            |
|-------------------------|--------------|---------------|--------|----------|-------------------------|---------------------|-----------------------|
| Study or Subgroup       | Events       | Total         | Events | Total    | Weight                  | M-H, Random, 95% CI | M-H, Random, 95% CI   |
| ABSORB China            | 2            | 238           | 0      | 237      | 2.9%                    | 4.98 [0.24-103.16]  |                       |
| ABSORB II               | 9            | 335           | 0      | 166      | 3.4%                    | 9.44 [0.55-161.27]  | <del></del>           |
| ABSORB III              | 24           | 1322          | 5      | 686      | 29.4%                   | 2.49 [0.95-6.50]    | -                     |
| ABSORB Japan            | 8            | 266           | 2      | 134      | 11.5%                   | 2.02 [0.43-9.36]    |                       |
| AIDA                    | 31           | 924           | 8      | 921      | 45.4%                   | 3.86 [1.79-8.36]    |                       |
| EVERBIO II              | 1            | 78            | 0      | 80       | 2.7%                    | 3.08 [0.13-74.38]   | <del></del>           |
| TROFI II                | 2            | 95            | 1      | 96       | 4.8%                    | 2.02 [0.19-21.92]   | <del>-   •</del>      |
| Total (95% CI)          |              | 3258          |        | 2320     | 100.0%                  | 3.15 [1.87-5.30]    | •                     |
| Total events            | 77           |               | 16     |          |                         |                     |                       |
| Heterogeneity: Tau2 :   | = 0.00; Chi  | $^{2} = 1.64$ | df = 6 | P = 0.99 | 5); I <sup>2</sup> = 0% | <b>⊢</b>            | <del></del>           |
| Test for overall effect | : Z = 4.33 ( | P < 0.0       | 001)   |          |                         | 0.005               | 0.1 1 10 200          |
|                         |              |               |        |          |                         |                     | Favors BVS Favors FES |



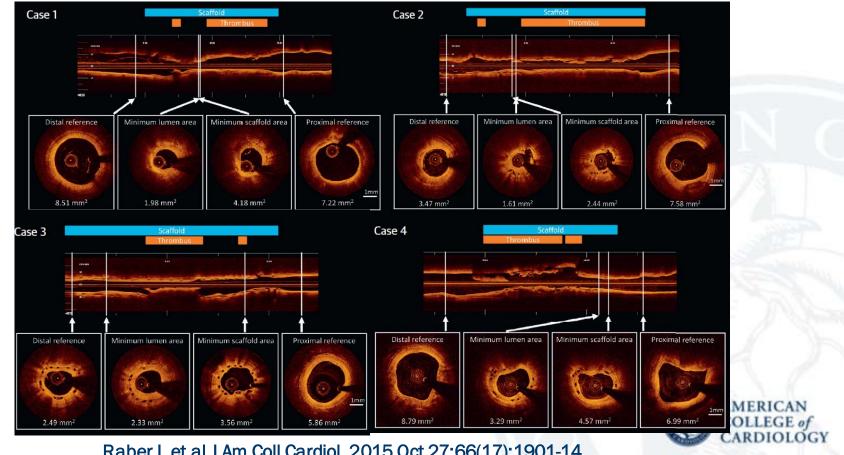


#### AbsorbBVS 7 Trial Meta-Analysis: Thrombosis across overtime



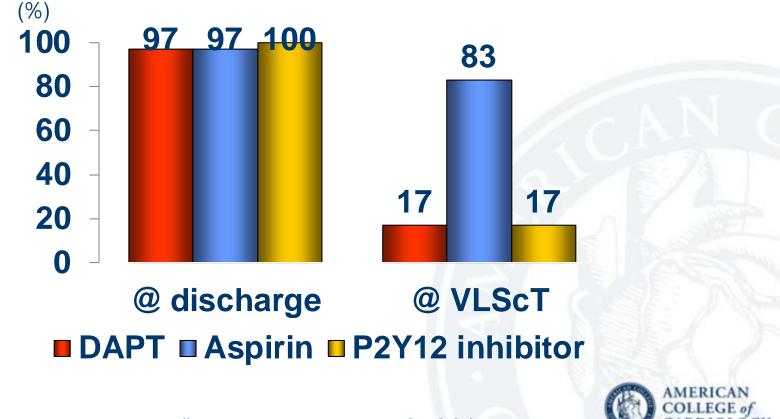



Sorrentino S; Giustino G; Mehran R, Dangas GD et al J Am Coll Cardiol. 2017 Apr 12. pii: S0735-1097(17)37013-4


# ABSORB III 3-year

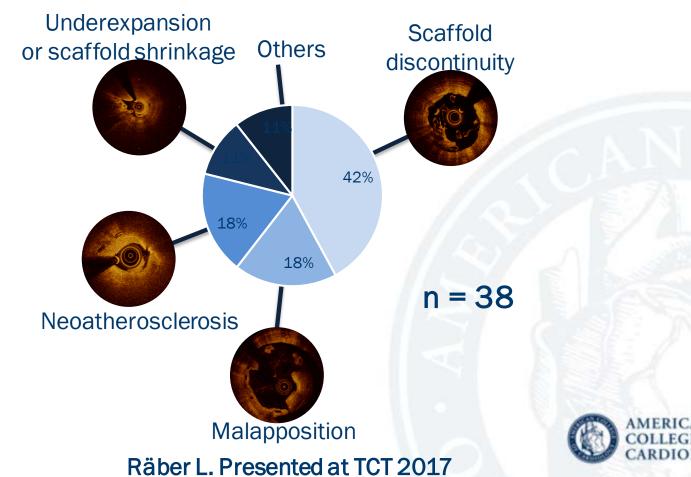
## **Device Thrombosis:** Stratified by Vessel Size




Stone G. Presented at TCT 2017

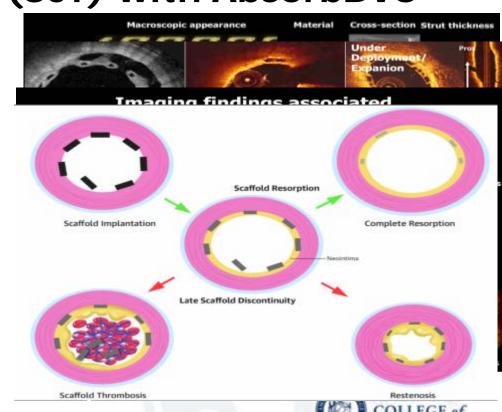
Late Series of Human Very Late scaffold thrombosis: The presence of malapposed-uncovered scaffold struts in direct contact with thrombus suggests a potential triggering role (all cases)"



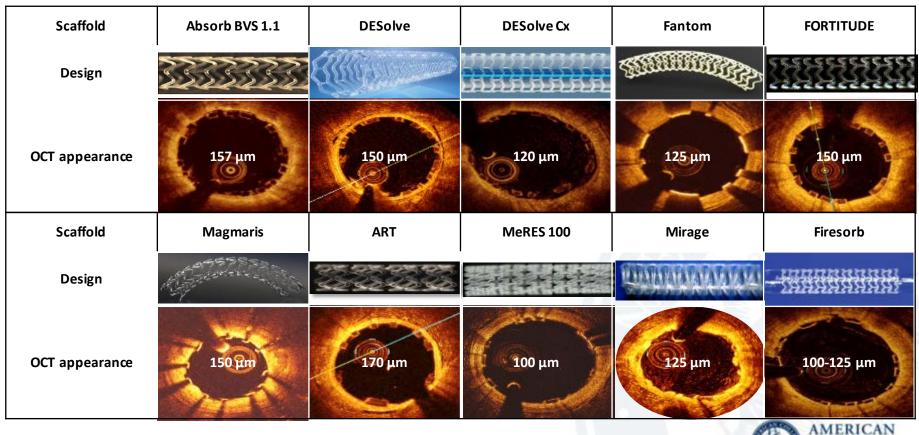

Raber L et al J Am Coll Cardiol. 2015 Oct 27;66(17):1901-14

# AbsorbBVS On-DAPT-status



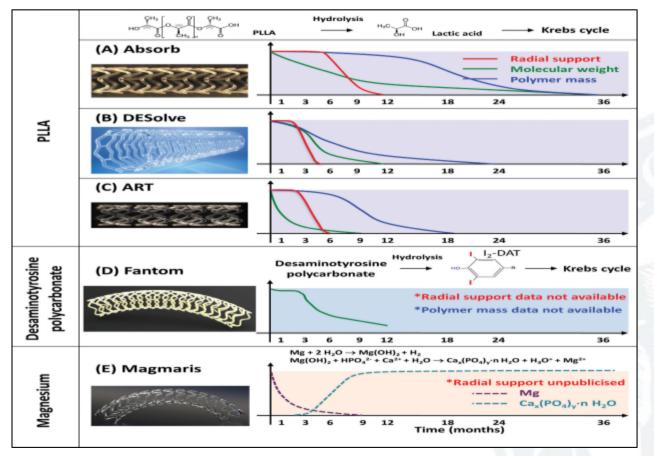

Räber L. Presented at TCT 2017

# AbsorbBVS Rates of failure mechanisms




# Presumed specific mechanisms of increased events (ScT) with AbsorbBVS

- Mechanically less strong material
  - → Thicker struts/
    Larger surface area
  - → Less embedment/ Under-expansion
  - → Disturbed microcirculation
  - → Predisposition to Early thrombosis
- Late discontinuities/ dismantling without encapsulation
  - → Late/ Very Late Thrombosis




# Strut thickness varies among BRS types



COLLEGE of CARDIOLOGY

## Biodegradation process of CE-mark approved BRS.



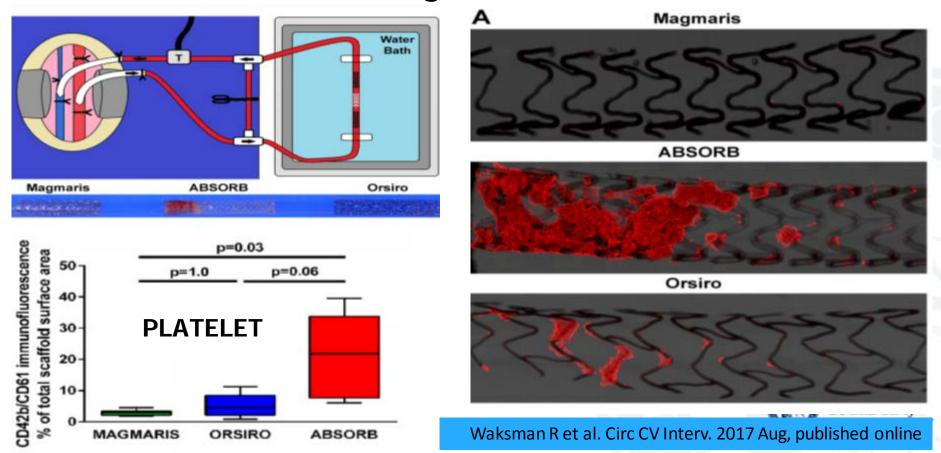


Onuma Y Presented at et Euro PCR 2017

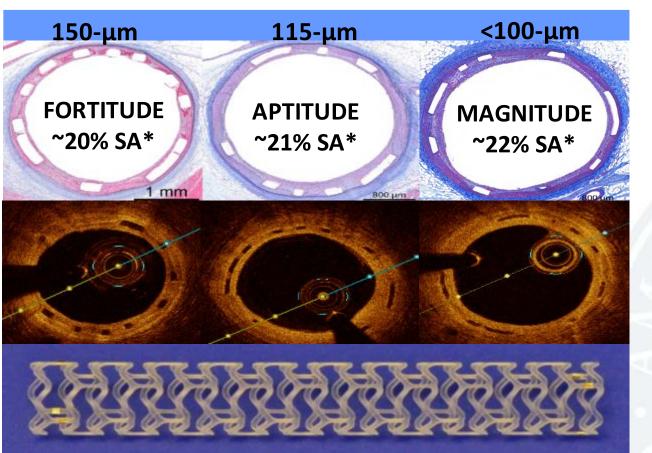
# **Evolution of the BIOTRONIK Magnesium Scaffold**

|          | Device generation                            |
|----------|----------------------------------------------|
|          | Sizes (mm)                                   |
|          | Backbone                                     |
| Design   | Strut thickness/width                        |
| De       | Markers                                      |
|          | Coating-drug                                 |
|          | Crossing profile in mm                       |
| Kinetics | Drug elution kinetics                        |
| Kine     | Absorption period in month                   |
|          | In-segment Late Lumen Loss (mm)              |
| Results  | TLF* (%)                                     |
| œ        | Definite or Probable Scaffold Thrombosis (%) |
|          |                                              |

\*Composite of cardiac death, target vessel myocardial


infarction, clinically driven target lesion

revascularization and CABG


BIOSOLVE-II / III **BIOSOLVE-I** AMS DREAMS 1G **DREAMS 2G (Magmaris)** 4-month 6-month 6-month Ø 3.0 & 3.5 Ø3.25 & 3.5 Ø 2.5, 3.0 & 3.5 Length: 15 Length: 15, 20 Length: 15, 20, 25 Refined Mg alloy Mg alloy Refined Mg alloy 120/120 µm (Ø 2.5) 165/80 μm 120/130 μm 150/150 µm (Ø 3.0 & 3.5) Ta-composite none none PLGA/PTX PLLA/SIR none 1.75 (BIOSOLVE-II) 1.6 1.5 1.50 (BIOSOLVE-III) like Taxus like Orsiro n.a. 1-2 ≈12 (Mg) 3-4 (Mg) 0.83±0.51 0.52±0.48 0.27±0.37 (BIOSOLVE-II) 23.8 4.3 3.3% 0.0 0.0

Waksman R Presented at TCT 2017

# In a porcine arterio-venous shunt model, Magmaris was less thrombogenic than Absorb...

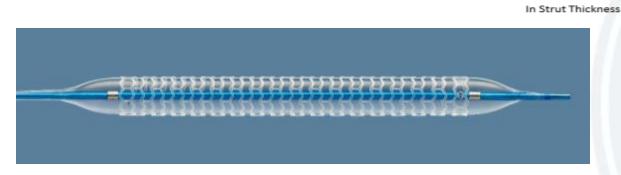


## **AMARANTH'S MINIATURIZATION PROCESS**

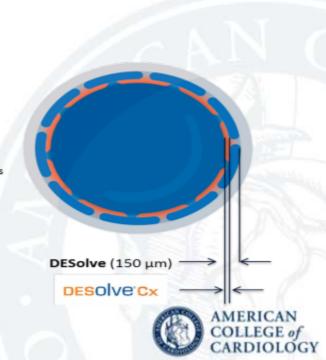


Strut miniaturization maintaining radial force to the <100µm range without compromising biomechanical behavior/properties

Small Studies Ongoing (n<200)




# DESolve Cx Bioresorbable Coronary Scaffold System


20%

Reduction

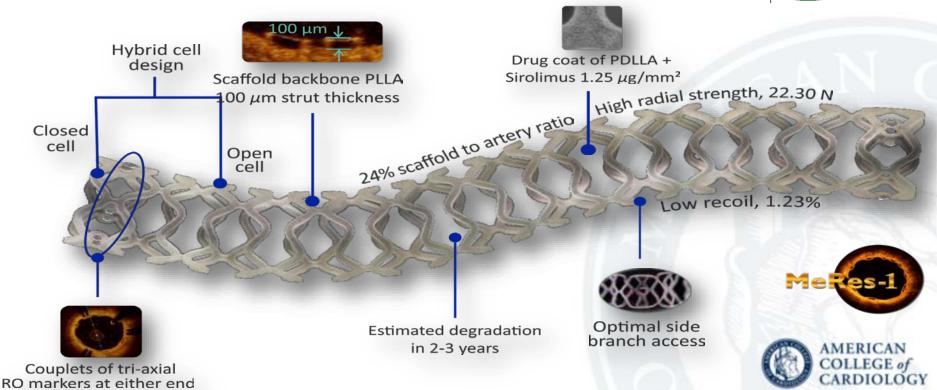
- 120 μm strut thickness
  - Improved deliverability
- System crossing profile (0.053" 1.3mm\*)
- 6 Fr (0.71" 1.8mm) guide catheter compatible
- 0.014" wire compatible







# Reva Fantom BRS Global Clinical Program


| Enrollment Complete – In Follow Up |                                                            |   |           |  |  |  |  |
|------------------------------------|------------------------------------------------------------|---|-----------|--|--|--|--|
| FANTOM I                           | First-in-human safety study (n=7)                          |   | Year 3    |  |  |  |  |
| FANTOM II Cohorts A&B              | Multi-center safety and performance study (n=240)          |   | Year 2    |  |  |  |  |
| Enrolling                          |                                                            |   |           |  |  |  |  |
| FANTOM II Cohort C                 | Long lesion and multiple vessel, multi-center study (n=50) |   | enrolling |  |  |  |  |
| FANTOM STEMI                       | Single center pilot study in STEMI (n=20)                  | 0 | enrolling |  |  |  |  |
| Planning                           |                                                            |   |           |  |  |  |  |
| FANTOM Registry                    | European post-market multi-center registry (n=125+)        |   | planning  |  |  |  |  |
| FANTOM III (US pivotal trial)      | Multi-center RCT vs. metallic DES (n=1,800-2,200)          |   | planning  |  |  |  |  |
| FANTOM Japan (pivotal trial)       | Multi-center RCT vs. metallic DES (n=350-400)              | • | planning  |  |  |  |  |



# MeRes100 (developed in INDIA)

Sirolimus Eluting Bioresorbable Vascular Scaffold





# **BRS Era: Conclusions 2017**

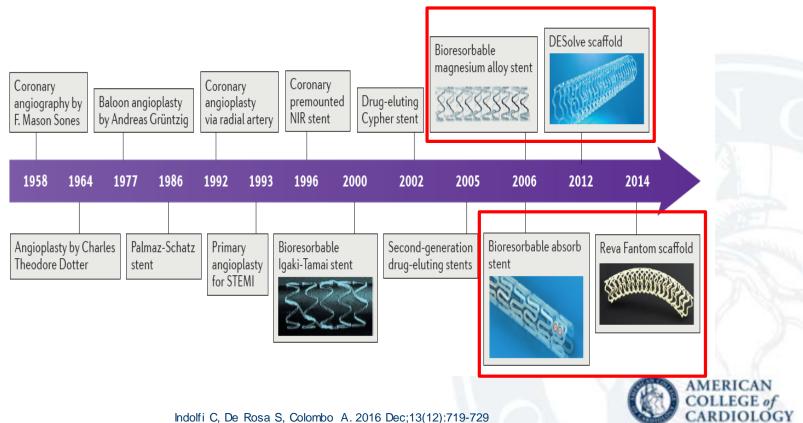
We hoped for a stent that dissolves ( was it too much to ask?)

- After it does its job
- And leaves no mark behind
- 1 was approved early indeed on long term promises...

Yet, our hopes were betrayed - BRS animal models inaccurate...

• DAPT came fast as a savior (sounds familiar?), but a bit too late...

#### We learnt a lot of lessons:


- Metallic EES may be super tough comparator!
- Never Underestimate Endovascular Thrombosis...
- Strutthickness is indeed a very basic factor to get right
- A BRS should, in fact, *Dissolve in time when in human coronaries*!

Bio-Engineering principles are improving steadily A restart is expected – 2<sup>nd</sup> / 3<sup>rd</sup> Generation BRS



## Bioresorbable Vascular Scaffolds

The fourth revolution in interventional Cardiology?

