

## Introduction

- Two or three decades ago, many experts predicted that the modification of risk factors, in particular, the treatment of high blood pressure and lipid disorders, would eliminate CAD in 10 20 years. Unfortunately, that prediction turned out to be wrong.
- Despite current treatments about 40% of heart attack survivors remain at increased risk of recurrent heart attack, stroke or cardiovascular death because of high-risk inflammatory atherosclerosis; 25% experience another event within five years
- Current drug therapies designed to slow the atherosclerotic process focus almost exclusively on reducing plasma levels of <u>LDL cholesterol</u>. However, experimental and clinical research supports that additionally targeting inflammation may be beneficial

[1] Ridker P. How Common Is Residual Inflammatory Risk? Circ Res. 2017;120:617-619

[2] Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135:e146-e603





## Introduction

- Heart attack occurs in about 580,000 people every year in EUR. and 750,000 people in the United States alone
- Despite standard treatment, people with a prior heart attack live with a higher ongoing risk of having another event or dying, and it has been shown that in about four in 10 people, this risk is directly related to increased inflammation associated with atherosclerosis
- In <u>FOURIER trial</u>, treatment with the PCSK9 inhibitor <u>Evolocumab</u> (Repatha, Amgen) reduced the risk of cardiovascular death, MI, stroke, hospitalization for unstable angina, or coronary revascularization by 15% when compared with placebo.
- Mozaffarian D, et al. Heart Disease and Stroke Statistics 2016 Update: A Report From the American Heart Association. Circulation. 2017; 135(23):e1-324.
   [Roth G. et al. Global. Regional. and National Burden of Cardiovascular Diseases for 10 Causes. 1990 to 2015. JACC. Available online May 17, 2017.





## Inflammation: an enduring flame

## Historical Highlights

- Although clinical features of inflammation were described in an Egyptian papyrus dated around 3000 BC
- Celsus, a Roman writer of the first century AD, first listed the four cardinal signs of inflammation: rubor (redness), tumor (swelling), calor (heat), and dolor (pain).

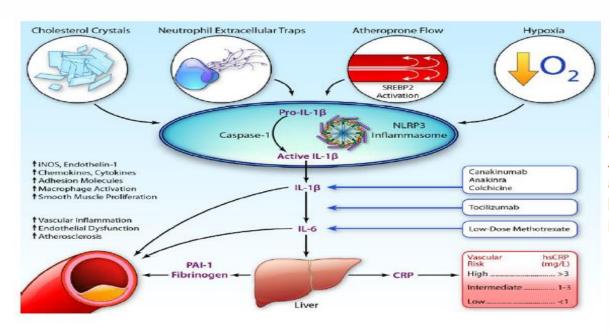








## **Historical Highlights:**


- In the 19th century, keen observers described the diapedesis of leukocytes from the blood into tissues.
- Rudolf Virchow recognized the inflammatory nature of atherosclerotic plaques.
- Virchow also understood atherosclerosis as an active process of tissue reaction, rather than a mere encrustation of thrombus or deposition of fatty material,
- Virchow's concept of atherogenesis, unfortunately yielded to the view of atheroma as a primarily passive lipid collection for more than a century.

## **Historical Highlights:**

- Paul Ehrlich studied antibodies and proposed the concept of complementarity of antigen and antibody, analogous to a key fitting into a lock.
- Ilya Mechnikov discovered phagocytosis at the end of the 19th century, providing the basis of the field we now call innate immunity.
- Ehrlich and Mechnikov shared the Nobel Prize in 1908 for their pioneering studies in immunity and host defenses



# Inflammation is the hallmark of atherosclerosis, leading to MI and other CV events



Interleukin-1β
is instrumental in driving
atherosclerosis

ACZ885 (canakinumab), a human mAb, selectively blocks the IL-1β inflammatory pathway

Ridker PM. Circ Res 2016;118:145-156





# **CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study)**

- The CANTOS trial examined whether reducing inflammation with Canakinumab in patients with a history of a prior heart attack can decrease the risk of another cardiovascular event happening in the future.
- Canakinumab is a human monoclonal antibody that neutralizes interleukin-1β, has proven to be well-tolerated in people with diabetes or arthritis.

# **CANTOS** (Canakinumab Anti-inflammatory Thrombosis Outcomes Study)

- A total of 10.061 patients with a history of myocardial infarction and hs-CRP equal to or above 2 mg/L were included in the CANTOS trial.
- Patients with a history of chronic or recurrent infections and cancer were excluded from the trial.
- The median follow-up was 3.7 years.
- The trial compared three doses of Canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every three months) with placebo.
- Enrollment began in April 2011 and was completed in March 2014. Last trial visit was in June 2017



## **Inclusion criteria:**

- History of MI
- hsCRP ≥2 mg/L

## **Exclusion criteria:**

- Chronic or recurrent infection
- High risk for tuberculosis or HIV
- History of cancer
- Immuno-compromised state
- Systemic use of anti-inflammatory treatment



## **CANTOS** study design

Myocardial infarction at least 30 days prior to randomization on standard therapies and elevated hsCRP (≥ 2 mg/L)

Randomized
Canakinumab 50 mg
SC q3 months

Randomized
Canakinumab 150 mg
SC q3 months

Randomized
Canakinumab 300 mg
SC q3 months

Randomized
Canakinumab 300 mg
SC q3 months

#### **Primary Endpoint**

 Time to first major cardiovascular event (MACE: CV death, non-fatal MI, or non-fatal stroke) of at least one ACZ885 dose compared to Placebo

#### **Key Secondary Endpoints**

- Time to first event of MACE or hospitalization for unstable angina requiring unplanned revascularization
- Time to new onset diabetes among those with pre-diabetes at randomization

#### Secondary Endpoints

- Time to all cause mortality
- · Time to first occurrence of all cause mortality, non-fatal stroke, or non-fatal MI

#### **Key Exploratory Endpoints**

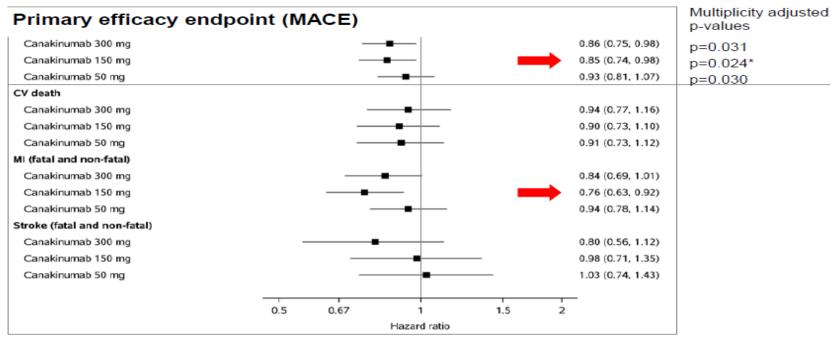
- DVT/PE¹, stent thrombosis, hospitalizations for CHF², PCI/CABG³ and biomarkers
- 1. Deep Vein Thrombosis/Pulmonary Embolism 2. Chronic Heart Failure 3. Percutaneous Coronary Intervention/Coronary Artery Bypass Graft





| Characteristic                                            | Placebo Group<br>(N = 3344) |                           | umab                       |                            |                         |
|-----------------------------------------------------------|-----------------------------|---------------------------|----------------------------|----------------------------|-------------------------|
|                                                           |                             | 50-mg Group<br>(N = 2170) | 150-mg Group<br>(N = 2284) | 300-mg Group<br>(N = 2263) | All Doses<br>(N = 6717) |
| Age — yr                                                  | 61.1±10.0                   | 61.1±10.1                 | 61.2±10.0                  | 61.1±10.1                  | 61.1±10.1               |
| Female sex — no. (%)                                      | 865 (25.9)                  | 541 (24.9)                | 575 (25.2)                 | 606 (26.8)                 | 1722 (25.6)             |
| Current smoking — no. (%)                                 | 765 (22.9)                  | 531 (24.5)                | 534 (23.4)                 | 536 (23.7)                 | 1601 (23.8)             |
| Median body-mass index (IQR)                              | 29.7 (26.6-33.8)            | 29.9 (26.6-33.9)          | 29.8 (26.5-33.7)           | 29.8 (26.5-33.8)           | 29.9 (26.6-33.8)        |
| Hypertension — no. (%)                                    | 2644 (79.1)                 | 1751 (80.7)               | 1814 (79.4)                | 1799 (79.5)                | 5364 (79.9)             |
| Diabetes — no. (%)                                        | 1333 (39.9)                 | 854 (39.4)                | 954 (41.8)                 | 888 (39.2)                 | 2696 (40.1)             |
| Qualifying myocardial infarction — no. (%)                |                             |                           |                            |                            |                         |
| STEMI                                                     | 1807 (54.0)                 | 1231 (56.7)               | 1231 (53.9)                | 1213 (53.6)                | 3675 (54.7)             |
| Non-STEMI                                                 | 1132 (33.9)                 | 710 (32.7)                | 781 (34.2)                 | 761 (33.6)                 | 2252 (33.5)             |
| Unknown type or missing data                              | 405 (12.1)                  | 229 (10.6)                | 272 (11.9)                 | 289 (12.8)                 | 790 (11.8)              |
| History of PCI — no. (%)                                  | 2192 (65.6)                 | 1454 (67.0)               | 1555 (68.1)†               | 1509 (66.7)                | 4518 (67.3)             |
| History of CABG — no. (%)                                 | 469 (14.0)                  | 302 (13.9)                | 324 (14.2)                 | 316 (14.0)                 | 942 (14.0)              |
| History of congestive heart failure — no. (%)             | 721 (21.6)                  | 451 (20.8)                | 478 (20.9)                 | 523 (23.1)                 | 1452 (21.6)             |
| Lipid-lowering therapy — no./total no. (%)                | 3132/3344 (93.7)            | 2038/2169 (94.0)          | 2114/2280 (92.7)           | 2113/2259 (93.5)           | 6265/6708 (93.4         |
| Statin — no./total no. (%)                                | 3045/3344 (91.1)            | 1990/2169 (91.7)          | 2065/2280 (90.6)           | 2057/2259 (91.1)           | 6112/6708 (91.1         |
| Renin-angiotensin inhibitor — no./total no. (%)           | 2665/3338 (79.8)            | 1718/2166 (79.3)          | 1817/2277 (79.8)           | 1792/2250 (79.6)           | 5327/6693 (79.6)        |
| Anti-ischemia agent — no./total no. (%)‡                  | 3080/3344 (92.1)            | 1974/2169 (91.0)          | 2079/2280 (91.2)           | 2058/2259 (91.1)           | 6111/6708 (91.1         |
| Antithrombotic agent or anticoagulant — no./total no. (%) | 3188/3344 (95.3)            | 2059/2169 (94.9)          | 2157/2280 (94.6)           | 2149/2259 (95.1)           | 6365/6708 (94.9         |
| Median high-sensitivity CRP level (IQR) — mg/liter        | 4.10 (2.75-6.85)            | 4.25 (2.80-7.15)          | 4.25 (2.85-7.05)           | 4.15 (2.85-7.15)           | 4.20 (2.80-7.10)        |
| Median interleukin-6 level (IQR) — ng/liter               | 2.61 (1.80-4.06)            | 2.53 (1.80-4.17)          | 2.56 (1.74-4.11)           | 2.59 (1.79-4.08)           | 2.56 (1.77-4.13)        |
| Median total cholesterol level (IQR) — mg/dl              | 161 (137-190)               | 159 (136-189)             | 159 (136-188)              | 161 (137-189)              | 160 (136-189)           |
| Median LDL cholesterol level (IQR) — mg/dl                | 82.8 (64.2-107.5)           | 81.2 (62.3-106.0)         | 82.4 (63.4-106.0)          | 83.5 (64.0-108.0)          | 82.0 (63.0-106.7        |
| Median HDL cholesterol level (IQR) — mg/dl                | 44.5 (37.1-52.6)            | 43.7 (37.0-52.2)          | 43.7 (36.3-52.0)†          | 44.0 (36.7-53.0)           | 43.7 (36.7-52.2)        |
| Median triglyceride level (IQR) — mg/dl                   | 139 (100-194)               | 140 (102-198)             | 139 (101–196)              | 138 (103-194)              | 139 (102-196)           |
| Median estimated GFR (IQR) — ml/min/1.73 m <sup>2</sup>   | 79.0 (65.0–93.0)            | 79.0 (64.0–92.0)          | 79.0 (64.5-93.0)           | 78.0 (64.0-93.0)           | 78.5 (64.0-93.0)        |
| Lost to follow-up — no. (%)                               | 9 (0.3)                     | 9 (0.4)                   | 5 (0.2)                    | 4 (0.2)                    | 18 (0.3)                |

<sup>\*</sup> Plus-minus values are means ±SD. There were no significant between-group differences at baseline, except as noted. The body-mass index is the weight in kilograms divided by the square of the height in meters. To convert the values for cholesterol to millimoles per liter, multiply by 0.0129. CABG denotes coronary-artery bypass grafting, CRP C-reactive protein, GFR glomerular filtration rate, HDL high-density lipoprotein, IQR interquartile range, LDL low-density lipoprotein, PCI percutaneous coronary intervention, and STEMI ST-segment elevation myocardial infarction.

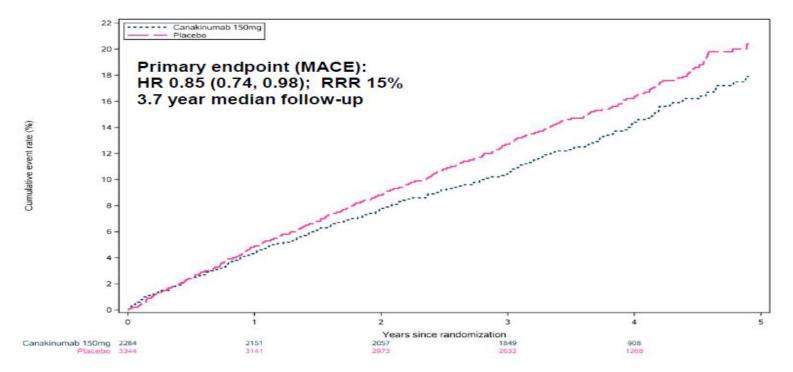





<sup>†</sup> P<0.05 for the comparison of canakinumab with placebo.

<sup>‡</sup> Anti-ischemia agents were defined as beta-blocking agents, nitrates, or calcium-channel-blocking agents.

# Primary endpoint: Statistically significant 15% reduction of MACE driven by fatal/non-fatal MI

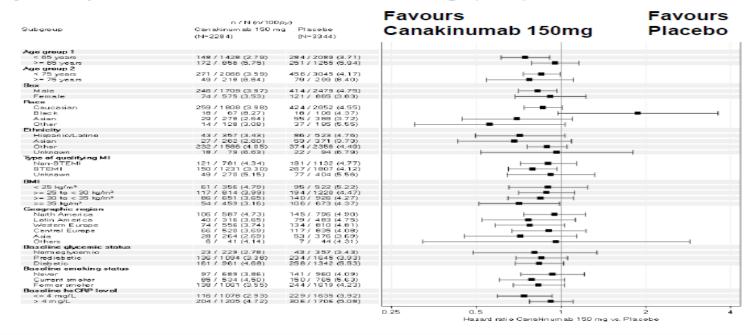



<sup>\*</sup> Statistically significant 1-sided P-value≤ 0.0245 (adjusted according to the Multiple Testing Procedure and accounting for the 2 efficacy IAs)





## Benefit apparent within first year of treatment and sustained throughout trial duration








# Consistent benefit across pre-specified baseline subgroups

Primary endpoint; Canakinumab 150 mg (1/2)



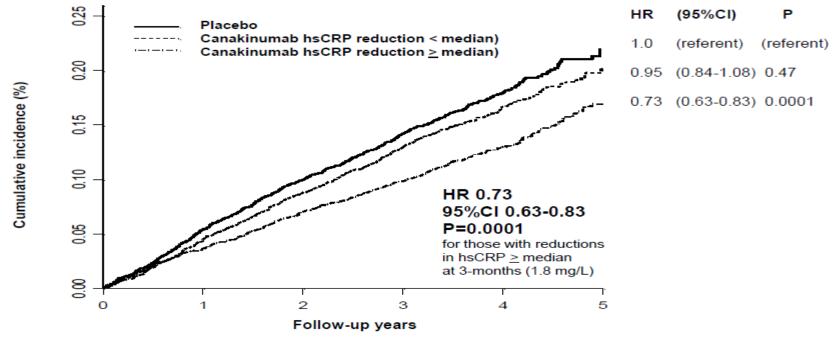




# Consistent benefit across pre-specified baseline subgroups

Primary endpoint; Canakinumab 150 mg (2/2)

|                            |                                     |                                        | Favours                                     | Favours |
|----------------------------|-------------------------------------|----------------------------------------|---------------------------------------------|---------|
|                            | n / N (n/100py                      |                                        | <b>6</b>                                    |         |
| Subgroup                   | Can akinum ab 150 m g<br>(N=2284)   | Placebo<br>(N=3344)                    | Canakinumab 150mg                           | Placebo |
| Baseline LDL-C tertiles    |                                     |                                        |                                             |         |
| <= 1.81 mm ol/L            | 91 / 773 (3.24)                     | 155 / 1089 (4.05)                      |                                             |         |
| > 1.81 to <= 2.51 m mal/L  | 99 / 754 (3.56)<br>126 / 740 (4.79) | 146 / 1113 (3.62)<br>226 / 1109 (5.79) |                                             |         |
| > 2.51 mmal/L              | 128 / 740 (4.78)                    | 226 / 1109 (5.79)                      |                                             |         |
| Baseline LDL-C level       |                                     |                                        |                                             |         |
| < 1.8 mmol/L               | 87 / 758 (3.16)                     | 151 / 1075 (4.00)                      |                                             |         |
| >= 1.8 m ma VL             | 229 / 1509 (4.18)                   | 376 / 2236 (4.71)                      |                                             |         |
| Baseline SBP level         |                                     |                                        |                                             |         |
| < 130 mmHg                 | 145 / 1136 (3.47)                   | 229 / 1602 (3.93)                      |                                             |         |
| >= 130 mm Hg               | 175 / 114B (4.26)                   | 306 / 1742 (5.06)                      |                                             |         |
| Baseline DBP level         |                                     |                                        |                                             |         |
| < 80 mm Hg                 |                                     | 300 / 1777 (4.73)                      |                                             |         |
| >= 80 mmHg                 | 153 / 1043 (4.04)                   | 235 / 1567 (4.24)                      |                                             |         |
| Baseline statin dese level |                                     |                                        |                                             |         |
| No Dose<br>Low Dose        | 37 / 282 (3.50)<br>57 / 511 (3.50)  | 89 / 400 (6.50)<br>109 / 707 (4.21)    |                                             |         |
| Medium Dase                | 116 / 768 (4.25)                    | 163 / 1147 (3.97)                      |                                             |         |
| High Dose                  |                                     | 174 / 109D (4.57)                      |                                             |         |
| Aspirin usage              | 1007 723 (3.02)                     | 1747 1090 (4.07)                       |                                             |         |
| No.                        | 51 / 271 (5.49)                     | 95 / 398 (6.59)                        |                                             |         |
| Yes                        | 258 / 2007 (3.65)                   | 449 / 2953 (4.25)                      |                                             |         |
| Medical history of gout    | 200 / 2007 (3.03)                   | 443 / 2030 (4.23)                      |                                             |         |
| No.                        | 283 / 2109 (3.70)                   | 480 / 3094 (4.36)                      |                                             |         |
| Yes                        | 37 / 175 (5.87)                     | 55 / 250 (6.41)                        |                                             |         |
| Hypertension               | 57 7 173 (3.07)                     | 337 230 (0.41)                         |                                             |         |
| Na                         | 42 / 470 (2.43)                     | 62 / 700 (3.17)                        |                                             |         |
| Yes                        | 278 / 1814 (4, 24)                  | 453 / 2644 (4.97)                      |                                             |         |
| Deslipidemia               |                                     |                                        |                                             |         |
| No                         | 12 / 79 (4.49)                      | 28 / 93 (9.61)                         |                                             |         |
| Tes                        | 308 / 2205 (3.84)                   | 509 / 3251 (4.40)                      |                                             |         |
| Prior PCI                  | 300 / 2 200 (3.04)                  | 30373231 (4.40)                        |                                             |         |
| Na                         | 108 / 728 (4.10)                    | 206 / 1152 (5.08)                      |                                             |         |
| Yes                        |                                     | 329 / 2192 (4.21)                      |                                             |         |
| Prior CABG                 | 2127 (000 (0.70)                    | 329 / 2 192 (4.21)                     |                                             |         |
| No.                        | 239 / 1959 (3.33)                   | 426 / 2875 (4.14)                      |                                             |         |
| Yes                        |                                     | 109 / 469 (6.81)                       |                                             |         |
| Prior stroke or TIA        | 817 324 (7.20)                      | 1097 409 (0.81)                        |                                             |         |
| No                         | 279 / 2098 (3.65)                   |                                        |                                             |         |
|                            |                                     | 479 / 3115 (4.30)                      |                                             |         |
| Yes                        | 41 / 198 (8.36)                     | 58 / 229 (7.59)                        |                                             |         |
| History of heart failure   | 0.45 4.4 5.05 15 0.53               |                                        |                                             |         |
| No                         |                                     | 380 / 2623 (3.79)                      |                                             |         |
| Yes                        | 104 / 478 (6.53)                    | 175 / 721 (7.33)                       |                                             |         |
| eGFR MDRD                  |                                     |                                        |                                             |         |
| < 60 mL/min/SA             |                                     | 148 / 526 (7.28)                       |                                             |         |
| >= 80 to < 90 mL/min/SA    |                                     | 234 / 1707 (3.92)                      |                                             |         |
| >= 90 m L/m in/9A          | 90 / 570 (3.51)                     | 153 / 1010 (4.12)                      |                                             |         |
| Time since index event     |                                     |                                        |                                             |         |
| < 5 m anths                |                                     | 1 D7 / 756 (4.0D)                      | <del>                                </del> |         |
| >= 6 months                | 253 / 1740 (3.98)                   | 428 / 2586 (4.66)                      | ———                                         |         |
| Time since index event     |                                     |                                        |                                             |         |
| < 12 months                |                                     | 149 / 1104 (3.78)                      |                                             |         |
| >= 12 m onths              | 230 / 1525 (4.12)                   | 386 / 2238 (4.87)                      | -                                           |         |
|                            |                                     |                                        |                                             |         |
|                            |                                     |                                        | D.25 D.5 1                                  | 2       |
|                            |                                     |                                        | Hezard ratio Canakinum ab 150 mg vs         | _       |


Favoure





Eavoure

# Pre-specified sub-group analysis of patients achieving hsCRP of 1.8 mg/L after 1<sup>st</sup> dose at month 3 show 27% RRR for MACE\*



<sup>\*</sup> Values for 3 point MACE (primary endpoint) or 4 point MACE (MACE + urgent revascularization) similar - graph above for MACE + urgent revascularisation





### Key secondary endpoint met at 150 mg dose

36% RRR for urgent revascularization component

17% RRR in composite of MACE + hospitalization for unstable angina requiring unplanned revascularization

|                               | Treatment          | N    | n (n/100py) | Hazard ratio vs.<br>Placebo (95% CI) | Adjusted<br>P-value |          |
|-------------------------------|--------------------|------|-------------|--------------------------------------|---------------------|----------|
| MACE or unstable              | Canakinumab 300 mg | 2263 | 348 ( 4.25) | 0.82 ( 0.72, 0.94)                   | 0.0648              | _        |
| angina requiring<br>unplanned | Canakinumab 150 mg | 2284 | 352 ( 4.29) | 0.83 ( 0.73, 0.95)                   | 0.0241*             | <b>—</b> |
| revascularization             | Canakinumab 50 mg  | 2170 | 344 ( 4.56) | 0.90 ( 0.79, 1.03)                   | 0.1895              | _        |
|                               | Placebo            | 3344 | 601 ( 5.13) |                                      |                     | -        |

#### 36% RRR for hospitalization for unstable angina requiring unplanned revascularization

|                                          | Treatment          | N    | n (n/100py) | Hazard ratio vs.<br>Placebo (95% CI) |
|------------------------------------------|--------------------|------|-------------|--------------------------------------|
| Unstable angina                          | Canakinumab 300 mg | 2263 | 34 ( 0.40)  | 0.58 ( 0.39, 0.86)                   |
| requiring unplanned<br>revascularization | Canakinumab 150 mg | 2284 | 38 ( 0.44)  | 0.64 ( 0.44, 0.94)                   |
|                                          | Canakinumab 50 mg  | 2170 | 38 ( 0.48)  | 0.71 ( 0.48, 1.05)                   |
|                                          | Placebo            | 3344 | 85 ( 0.69)  |                                      |

<sup>\*</sup> Statistically significant 1-sided P-value≤ 0.0245 (adjusted according to the Multiple Testing Procedure and accounting for the 2 efficacy IAs)





# Preliminary NNT<sup>1</sup> for both, overall population and hsCRP responders, compares favorably to recent benchmarks

| Endpoint MACE (MI, Stroke, CV death) | CANTOS<br>150mg <sup>2</sup><br>All patients | CANTOS 150mg<br>hsCRP responders<br>(<1.5 mg/L) | FOURIER <sup>3</sup> |
|--------------------------------------|----------------------------------------------|-------------------------------------------------|----------------------|
| 2 years                              | 78                                           | 50                                              | 74                   |
| 3.7 years                            | 46                                           | 30                                              | N/A                  |

<sup>\*</sup> lung cancer incidence and mortality benefit with 300 mg confirmed for both groups

- NNT: Number needed to treat to prevent one MACE event
- Calculated using Hazard Ratio approach
- N Engl J Med 2017; 376:1713-1722





### Adverse event and tolerability profile

Generally comparable to placebo

|                                                             | Can. 300 mg<br>N=2263<br>n (%) | Can. 150 mg<br>N=2285<br>n (%) | Can. 50 mg<br>N=2170<br>n (%) | Placebo<br>N=3348<br>n (%) |
|-------------------------------------------------------------|--------------------------------|--------------------------------|-------------------------------|----------------------------|
| Subjects with at least one AE                               | 1987 (87.8)                    | 1970 (86.2)                    | 1872 (86.3)                   | 2914 (87.0)                |
| Subjects with at least one SAE                              | 836 (36.9)                     | 812 (35.5)                     | 741 (34.1)                    | 1203 (35.9)                |
| AEs suspected to be related to study drug                   | 355 (15.7)                     | 350 (15.3)                     | 267 (12.3)                    | 474 (14.2)                 |
| Subjects who permanently discontinued study drug due to AEs | 175 (7.7)                      | 164 (7.2)                      | 142 (6.5)                     | 244 (7.3)                  |
| Discontinued due to SAEs                                    | 135 (6.0)                      | 130 (5.7)                      | 117 (5.4)                     | 197 (5.9)                  |
| Discontinued due to non-serious AEs                         | 40 (1.8)                       | 34 (1.5)                       | 25 (1.2)                      | 47 (1.4)                   |
| AEs leading to study treatment interruption                 | 268 (11.8)                     | 270 (11.8)                     | 228 (10.5)                    | 399 (11.9)                 |





### Select safety topics of interest<sup>1</sup>

#### Canakinumab SC q 3 months

| Adverse Event (%)       | Placebo<br>(N=3347) | 50 mg<br>(N=2170) | 150 mg<br>(N=2284) | 300 mg<br>(N=2263) | P-trend   |
|-------------------------|---------------------|-------------------|--------------------|--------------------|-----------|
| Any SAE                 | 12.0                | 11.4              | 11.7               | 12.3               | 0.43      |
| Leukopenia              | 0.24                | 0.30              | 0.37               | 0.52               | 0.002     |
| Any infection           | 2.86                | 3.03              | 3.13               | 3.25               | 0.12      |
| Fatal infection         | 0.18                | 0.31              | 0.28               | 0.34               | 0.09/0.02 |
| Injection site reaction | 0.23                | 0.27              | 0.28               | 0.30               | 0.49      |
| Any Malignancy          | 1.88                | 1.85              | 1.69               | 1.72               | 0.31      |
| Fatal Malignancy        | 0.64                | 0.55              | 0.50               | 0.31               | 0.0007    |
| Arthritis               | 3.32                | 2.15              | 2.17               | 2.47               | 0.002     |
| Osteoarthritis          | 1.67                | 1.21              | 1.12               | 1.30               | 0.04      |
| Gout                    | 0.80                | 0.43              | 0.35               | 0.37               | 0.0001    |
| ALT > 3x normal         | 1.4                 | 1.9               | 1.9                | 2.0                | 0.19      |
| Bilirubin > 2x normal   | 0.8                 | 1.0               | 0.7                | 0.7                | 0.34      |
|                         |                     |                   |                    |                    |           |

<sup>1.</sup> Based on known or potential risks of canakinumab





### Summary of CANTOS cardiovascular results

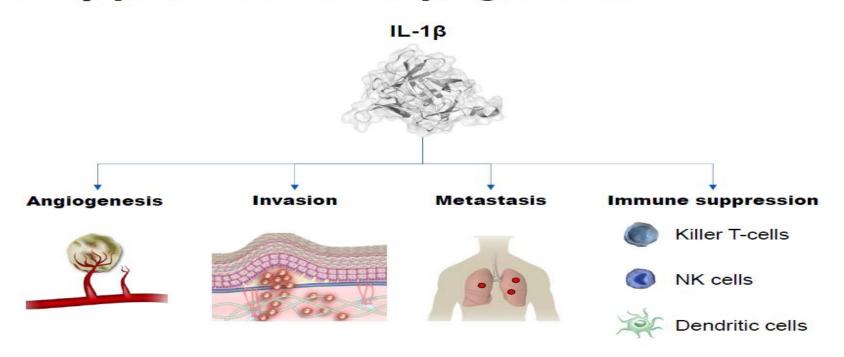
CANTOS study demonstrated ACZ885 is the first anti-inflammatory therapy to demonstrate reduced risk of major cardiovascular events, particularly in subgroup of hsCRP responders

- 15% relative risk reduction (RRR) in MACE (p=0.0241,150mg)
- Effect driven by 24% RRR of fatal or non-fatal heart attack; a 10% RRR of cardiovascular death and neutral effect on risk of stroke
- Subgroup of patients achieving a reduction of hsCRP below 1.8 mg/L after 1<sup>st</sup> dose (at 3 months) show 27% RRR for MACE, with NNT of 50 at year 2 and 30 at 3.7 years

The 150-mg dose, but not the other doses, met the pre-specified multiplicityadjusted threshold for statistical significance for the primary end point and the secondary end point






# CANTOS study well-conducted with impact on biomarkers without impact on lipids

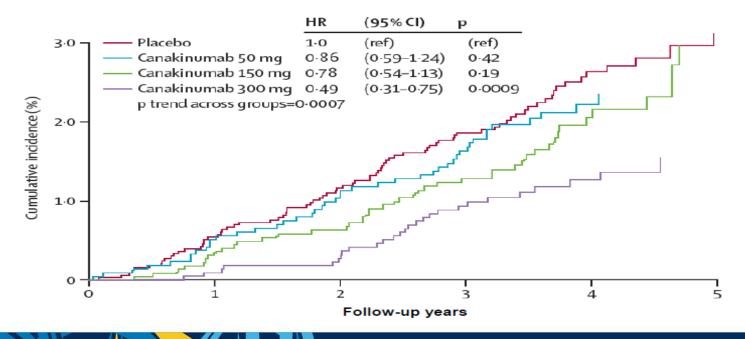
- Baseline demographics for age, sex, time since prior MI, smoking status, type 2 diabetes, and dyslipidemia comparable across groups
- Patients well managed at baseline for LDL-C and blood pressure:
  - Over 90% on lipid lowering agents, anti-thrombotics, and anti-ischemics
  - Over 80% on beta blockers and RAAS blockers
- Dose dependent reductions in hsCRP and IL-6
- No meaningful changes in LDL-C, HDL-C, and Triglycerides





### IL-1β promotes cancer progression\*



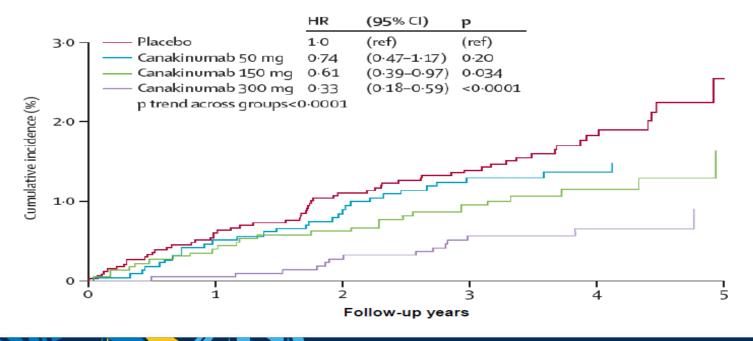

- \* Dinarello CA. Why not treat human cancer with interleukin1 blockade? Cancer Metastasis Rev 2010; 29: 317-29.
- \* Lewis AM. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment J Transl Med. 2006; 4: 48





## Dose dependent risk reduction with canakinumab in all fatal cancer incidence of 51% (300mg)

#### Cumulative incidence all fatal cancers

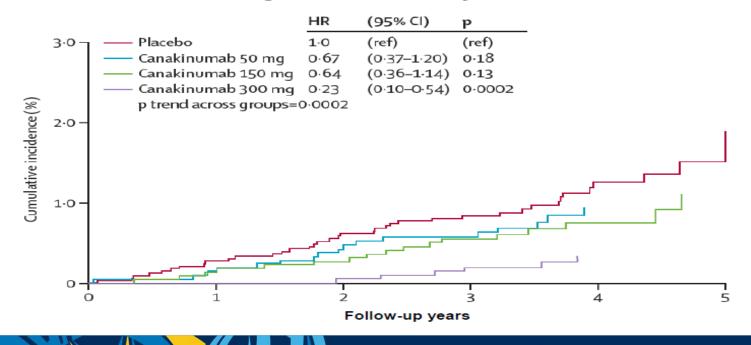







# Dose dependent risk reduction with canakinumab in lung cancer incidence of 67% (300 mg)

#### Cumulative incidence lung cancer








# Dose dependent risk reduction with canakinumab in lung cancer mortality incidence of 77% (300mg)

#### Cumulative incidence lung cancer mortality







# Summary of CANTOS lung cancer results

| Canakinumab | Dose ( | SC q | 3 months) | ı |
|-------------|--------|------|-----------|---|
|-------------|--------|------|-----------|---|

|                     | Placebo    | 50mg       | 150mg      | 300mg      | All doses  | P-value for<br>trend across |
|---------------------|------------|------------|------------|------------|------------|-----------------------------|
| Clinical Outcome    | (N=3344)   | (N=2170)   | (N=2284)   | (N=2263)   | (N=6717)   | doses                       |
| Any Cancer (all)    |            |            |            |            |            |                             |
| Incident rate, (N)  | 1.88 (231) | 1.85 (144) | 1.69 (143) | 1.72 (144) | 1.75 (431) | 0.31                        |
| Hazard ratio        | 1.00       | 0.99       | 0.90       | 0.91       | 0.93       |                             |
| 95 % CI             | (referent) | 0.80-1.22  | 0.73-1.11  | 0.74-1.12  | 0.79-1.09  |                             |
| Р                   | (referent) | 0.91       | 0.31       | 0.38       | 0.38       |                             |
| Any Cancer (fatal)  |            |            |            |            |            |                             |
| Incidence rate, (N) | 0.64 (81)  | 0.55 (44)  | 0.50 (44)  | 0.31 (27)  | 0.45 (115) | 0.0007                      |
| Hazard ratio        | 1.00       | 0.86       | 0.78       | 0.49       | 0.71       |                             |
| 95% CI              | (referent) | 0.59-1.24  | 0.54-1.13  | 0.31-0.75  | 0.53-0.94  |                             |
| Р                   | (referent) | 0.42       | 0.19       | 0.0009     | 0.016      |                             |
| Lung Cancer (all)   |            |            |            |            |            |                             |
| Incidence rate, (N) | 0.49 (61)  | 0.35 (28)  | 0.30 (26)  | 0.16 (14)  | 0.27 (68)  | <0.0001                     |
| Hazard ratio        | 1.00       | 0.74       | 0.61       | 0.33       | 0.55       |                             |
| 95% CI              | (referent) | 0.47-1.17  | 0.39-0.97  | 0.18-0.59  | 0.39-0.78  |                             |
| Р                   | (referent) | 0.20       | 0.034      | <0.0001    | 0.0007     |                             |
| Lung Cancer (fatal) |            |            |            |            |            |                             |
| Incidence rate, (N) | 0.30 (38)  | 0.20 (16)  | 0.19 (17)  | 0.07 (6)   | 0.15 (39)  | 0.0002                      |
| Hazard ratio        | 1.00       | 0.67       | 0.64       | 0.23       | 0.51       |                             |
| 95% CI              | (referent) | 0.37-1.20  | 0.36-1.14  | 0.10-0.54  | 0.33-0.80  |                             |
| Р                   | (referent) | 0.18       | 0.13       | 0.0002     | 0.0026     |                             |







# Trend of up to 37% risk reduction for fatal – non-lung – cancers also observed

#### Canakinumab Dose (SC q 3 months)

| Clinical Outcome        | Placebo<br>(N=3344) | 50mg<br>(N=2170) | 150mg<br>(N=2284) | 300mg<br>(N=2263) | All doses<br>(N=6717) | P-value for<br>trend across<br>doses |
|-------------------------|---------------------|------------------|-------------------|-------------------|-----------------------|--------------------------------------|
| Non-Lung Cancer (all)   |                     |                  |                   |                   |                       |                                      |
| Incident rate, (N)      | 1.46 (179)          | 1.55 (121)       | 1.44 (122)        | 1.60 (134)        | 1.53 (377)            | 0.54                                 |
| Hazard ratio            | 1.00                | 1.08             | 0.99              | 1.10              | 1.05                  |                                      |
| 95 % CI                 | (referent)          | 0.85-1.36        | 0.78-1.24         | 0.88-1.37         | 0.88-1.26             |                                      |
| Р                       | (referent)          | 0.54             | 0.91              | 0.42              | 0.58                  |                                      |
| Non-Lung Cancer (fatal) | )                   |                  |                   |                   |                       |                                      |
| Incidence rate, (N)     | 0.39 (49)           | 0.38 (30)        | 0.34 (30)         | 0.24 (21)         | 0.32 (81)             | 0.06                                 |
| Hazard ratio            | 1.00                | 0.96             | 0.88              | 0.63              | 0.82                  |                                      |
| 95% CI                  | (referent)          | 0.61-1.51        | 0.56-1.39         | 0.38-1.04         | 0.58-1.17             |                                      |
| P                       | (referent)          | 0.86             | 0.60              | 0.07              | 0.28                  |                                      |







### **Summary of CANTOS Oncology findings**

Anti-inflammatory therapy with ACZ885 targeting the IL-1 $\beta$  innate immunity pathway may markedly impact early/undetected lung cancers and lung cancer mortality

- In pre-clinical models for over a decade, IL-1β inhibition demonstrated to reduce cancer invasiveness, metastasis, and angiogenesis.
- Incident cancers and cancer deaths were prospective, blinded safety analyses in the CANTOS study, adjudicated by an independent Oncology monitoring committee, as agreed with FDA in 2010
- Dose dependent 51% RRR in total cancer mortality (p=0.0009, 300mg); 77% RRR in lung cancer mortality (p=0.0002, 300mg);
   67% RRR in incident lung cancers (p=0.00008, 300mg)
- 37% RRR trend in cancer mortality excluding lung cance





# Summary of CANTOS findings in CV risk reduction<sup>1</sup> and cancer therapy<sup>2</sup>

CANTOS study demonstrated ACZ885 is the first anti-inflammatory therapy to demonstrate reduced risk of major cardiovascular events, particularly in sub-group hsCRP<sup>3</sup> responders

- 15% relative risk reduction (RRR) in MACE<sup>4</sup> (p=0.0241<sup>5</sup>,150mg)
- · Effect driven by 24% RRR of fatal or non-fatal heart attack
- Subgroup of patients achieving a reduction of hsCRP below 1.8 mg/L after 1<sup>st</sup> dose (at 3 months) show 27% RRR for MACE, with NNT<sup>6</sup> of 50 at year 2 and 30 at 3.7 years

Anti-inflammatory therapy with ACZ885 targeting the IL-1β innate immunity pathway may markedly impact early/undetected lung cancers and lung cancer mortality

- It has been hypothesized that inhibition of IL-1β might reduce cancer invasiveness, metastasis, and angiogenesis
- Incident cancers and cancer deaths was prospective, blinded safety analysis adjudicated by an independent Oncology monitoring committee as agreed with FDA in 2010
- Dose dependent 51% RRR in total cancer mortality (p=0.0009, 300mg); 77% RRR in lung cancer mortality (p=0.0002, 300mg); 67% RRR in incident lung cancers (p=0.00008, 300mg)
- · 37% RRR trend in cancer mortality, excluding lung cancer

1. Ridker P. et al., Anti-Inflammatory Therapy with Canakinumab for Atherosclerotic Disease, NEJM 2017 2. Ridker P. et al, Effects of Interleukin-1 β Inhibition with Canakinumab on Incident Lung Cancer: Results from a Randomized Clinical Trial, LANCET 2017 3. High sensitivity C-reactive protein 4. CV death, non-fatal MI, or non-fatal stroke 5. adjusted for multiplicity; All other p-values are unadjusted 6. NNT: Number needed to treat to prevent one MACE event







## **CONCLUSION FROM CANTOS TRIAL:**

Anti-inflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering.



## Take home message

- The positive results of CANTOS study certainly open new doors to the prevention and treatment of cardiovascular disease.

- If we can identify those patients who have low LDL level with high CRP level, it would be a new way of treating people who would otherwise follow a fatal path.

- The results of the study inevitably raise the question whether reducing inflammation by improving diet and lifestyle will provide similar results as treatment with an expensive drug with potential side effects.





# THANK YOU









