

Disclosures: None

European Heart Journal (2018) 0, 1–11 European Society doi:10.1093/eurheartj/ehy530 of Cardiology

Imaging

Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry

Timothy A. Fairbairn^{1*}, Koen Nieman², Takashi Akasaka³, Bjarne L. Nørgaard⁴, Daniel S. Berman⁵, Gilbert Raff⁶, Lynne M. Hurwitz-Koweek⁷, Gianluca Pontone⁸, Tomohiro Kawasaki⁹, Niels Peter Sand¹⁰, Jesper M. Jensen⁴, Tetsuya Amano¹¹, Michael Poon¹², Kristian Øvrehus¹⁰, Jeroen Sonck¹³, Mark Rabbat¹⁴, Sarah Mullen¹⁵, Bernard De Bruyne¹⁶, Campbell Rogers¹⁵, Hitoshi Matsuo¹⁷, Jeroen J. Bax¹⁸, Jonathon Leipsic¹⁹, and Manesh R. Patel⁷

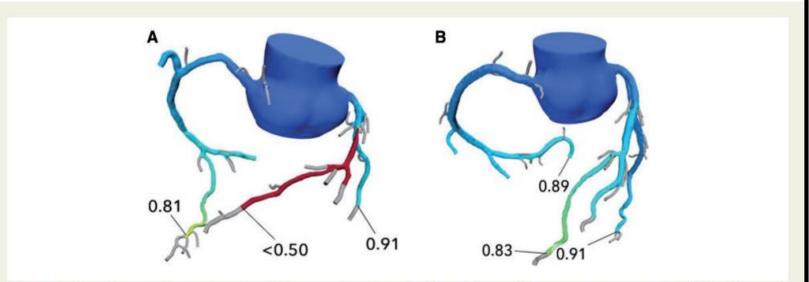


Figure 6 Three-dimensional coronary computed tomography angiography-derived fractional flow reserve pressure model of (A) a 59-year-old male with a 50–70% mid left anterior descending coronary artery stenosis yet severe ischaemia (coronary computed tomography angiography-derived fractional flow reserve ≤0.50) who experienced an NSTEMI in follow-up. (B) In comparison, a 71-year-old male with a more severe stenosis (70–90%) in the mid-left anterior descending without lesion specific ischaemia (coronary computed tomography angiography-derived fractional flow reserve 0.83) who was clinically well through 90 days follow-up.

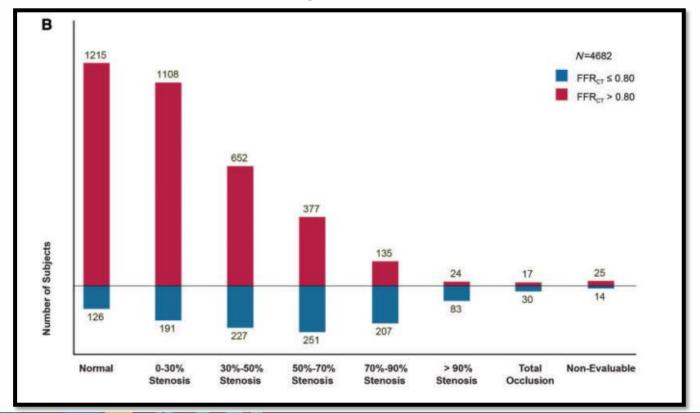
- Multi-center, prospective registry
- •Clinical outcomes of FFR_{CT} guided treatment in **clinically stable** symptomatic patients
- •5083 patients from up to 38 sites in Europe, USA, Canada and Asia

Primary endpoint:

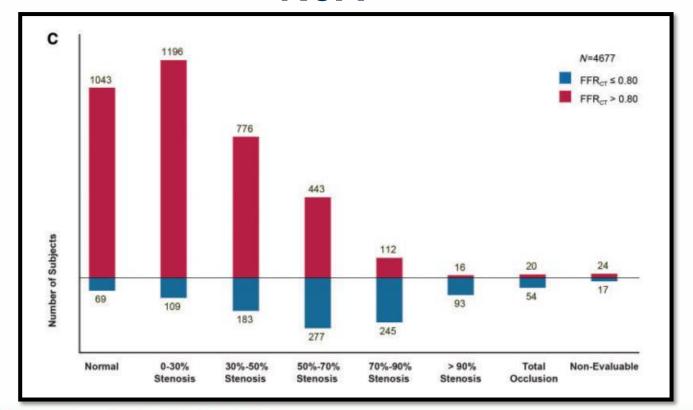
- Reclassification rate between the management plan based on coronary CTA alone versus CTA plus ${\sf FFR}_{\sf CT}$
 - (a) optimal medical therapy
 - (b) percutaneous coronary intervention
 - (c) coronary artery bypass graft surgery

Secondary endpoints:

- Evaluation of the rate of invasive coronary angiography (ICA)
- Revascularization & MACE, at 3-year follow-up
- Cumulative radiation dose exposure


Should FFR_{CT} change management in these patients?

	CTA only (n = 346)	FFR _{CT} (n = 4737)	Total $(n = 5083)$	
Age (years)	64.3 (11.1)	66.1 (10.3)	66.0 (10.3)	
Male gender	215 (62.1%)	3134 (66.2%)	3349 (65.9%)	
Hypertension	210 (60.7%)	2835 (59.8%)	3045 (59.9%)	
Diabetes mellitus	99 (28.6%)	1037 (21.9%)	1136 (22.3%)	
Hyperlipidaemia	204 (59%)	2753 (58.1%)	2957 (58.2%)	
Smoking				
Current smoking	46 (13.3%)	797 (16.8%)	843 (16.6%)	
Ex-smoker	118 (34.1%)	1615 (34.1%)	1733 (34.1%)	
Never smoked	141 (41.6%)	1973 (41.7%)	2117 (41.6%)	
Unknown	38 (11.0%)	352 (7.4%)	390 (7.7%)	
Angina status				
Atypical	175 (50.6%)	1727 (36.5%)	1902 (37.4%)	
Typical	41 (11.8%)	1025 (21.6%)	1066 (21.0%)	
Non-cardiac pain	8 (2.3%)	297 (6.3%)	305 (6.0%)	
Dyspnoea	34 (9.8%)	472 (10.0%)	506 (10.0%)	
None	73 (21.1%)	1164 (24.6%)	1237 (24.3%)	
Unknown	15 (4.3%)	52 (1.1%)	67 (1.3%)	
CCS angina class				
Grade 1	18 (43.9%)	254 (24.8%)	272 (25.5%)	
Grade II	16 (39.0%)	561 (54.7%)	577 (54.1%)	
Grade III	5 (12.2%)	111 (10.8%)	116 (10.9%)	
Grade IV	0	23 (2.2%)	23 (2.2%)	
Unknown	2 (4.9%)	76 (7.4%)	78 (7.3%)	
CCTA rejection rate			160 (3.1%)	
Diamond–Forrester risk	46.8 (±19.9)	51.6 (±20.3)	51.3 (±20.3)	


LCX

RCA

LAD

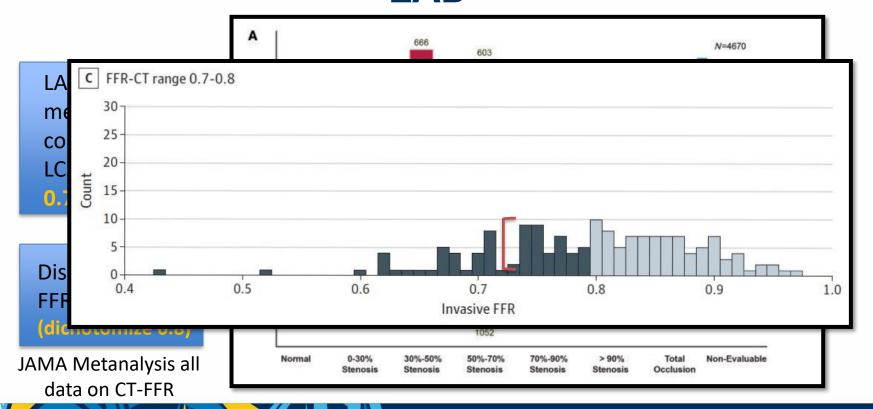


Table 2 FFR_{CT}-determined treatment plan and actual clinical management at 90 days

Actual treatment	Site-determined post-FI	Site-determined post-FFR _{CT} treatment plan			
	Revascularization (n = 1418)	Medications (n = 2679)	Further diagnostics (n = 121)	Total (n = 4737)	
MT	504 (35.5%)	2545 (95.0%)	92 (76.0%)	3573 (75.4%)	
PCI	799 (56.3%)	115 (4.3%)	25 (20.7%)	1015 (21.4%)	
CABG	115 (8.1%)	19 (0.7%)	4 (3.3%)	149 (3.1%)	

Table 3 Actual treatment at 90 days (medical therapy vs. revascularization) stratified by coronary computed tomography angiography-derived fractional flow reserve values (0.05 increments)

Actual treatment	Site-determined post-FFR _{CT} treatment plan						
	<0.71 (n = 1530)	0.71–0.75 (n = 615)	0.76–0.8 (n = 1000)	0.81–0.85 (n = 867)	0.86–0.9 (n = 595)	>0.9 (n = 130)	Total (n = 4737)
Medical treatment	709 (46.3%)	468 (76.1%)	874 (87.4%)	820 (94.6%)	578 (97.1%)	124 (95.4%)	3573 (75.4%)
Revascularization	821 (53.7%)	147 (23.9%)	126 (12.6%)	47 (5.4%)	17 (2.9%)	6 (4.6%)	1164 (24.6%)

0.4 0.3 Major adverse cardiovascular events, HR for death & MI myocardial infarction, and death CI 0.88-246 No death or MI occurred within 90 days in any subject whose FFR_{CT} Suggests was >0.80 (n = 1592). Conversely, in patients with at least one FFR_{CT} underpowered value \leq 0.80 (n = 3145) there were 19 (0.6%, P < 0.01) MACE events; 4 MI, 5 urgent unplanned hospitalizations for ACS and urgent revascularization and 10 deaths. These events predominantly occurred in FFR the lower FFR_{CT} ranges below 0.76 (18 of 19), indicating that an 3125 FFR 1588 FFR_{CT} <0.80 increased the risk of an adverse event [MACE, hazard CRF page, in ratio (HR) 19.75, CI 1.19-326], P = 0.0008 and 14 death/MI, HR 14.68, CI 0.88–246, P = 0.0397, (Figure 5A and B). 90 Days

0.25%(0.09%)

0.00%(0.00%)

В

FFR_{-T} ≤ 0.80

FFR_{ct} > 0.80

0.45%(0.12%)

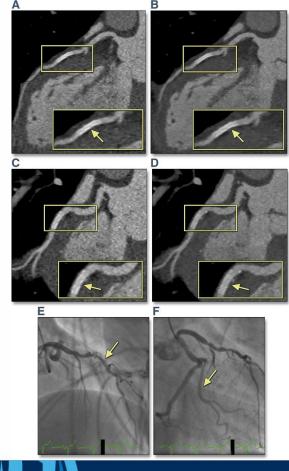
0.00%(0.00%)

0.35%(0.11%)

0.00%(0.00%)

- A severely underpowered non-randomized study
- Unexplained high event rate in a low FFR_{CT} in stable patients with very few typical symptoms

- Cami et al (JSCCT September 2018)
 - 930 patients FFR_{CT and} FFR_{Inv}
 - LAD, LCX, RCA distal to proximal segments
 - Distal vessel FFR_{CT} may overestimate significance of stenosis

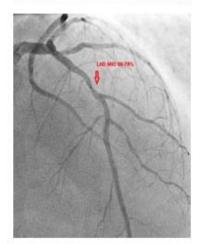


Cardiovascular Imaging

FAST FFR

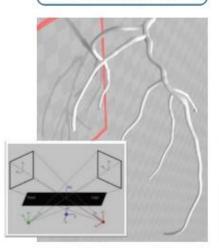
Background

- FFR utilization, however, remains lower than expected because of a number of potential issues including the extra time it takes, wire handling characteristics, pressure wire drift, the need for hyperemia, and the expense.
- For all of these reasons, a technique for deriving FFR without the need of a pressure wire or hyperemic agent would be advantageous and could increase the adoption of physiology-guided revascularization.

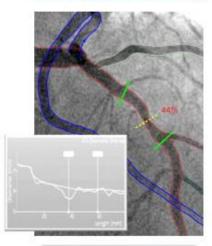

Concept

 Coronary angiography-derived FFR (FFR_{angio}) is a new method for measuring FFR without a coronary pressure wire or hyperemic agent.

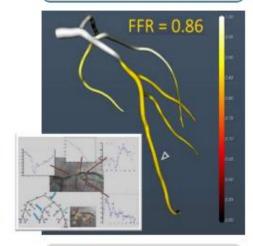
FFR_{angio} relies on creating a three-dimensional (3D) reconstruction of the coronary arterial system and estimating the resistance and flow at each point along the entire coronary tree.



Optimal 2D angiography


Optimal projections Optimal frame Motion compensation

3D model reconstruction


Extracting centerlines
Tree topology

Stenosis assessment

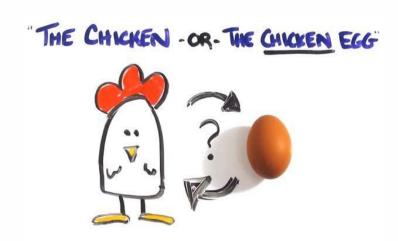
Bifurcation analysis 2D-QCA analysis Estimating diameters

Hemodynamic evaluation

Resistance mapping Maximum blood flow Flow rate ratio

Summary

- FFR derived from routine coronary angiography (FFR_{angio}) had very high sensitivity, specificity and diagnostic accuracy, all of which were greater than 90% for predicting the reference standard, coronary pressure wire-derived FFR.
- FFR_{angio} and FFR remained highly correlated over the entire range of FFR values.
- FFR_{angio} was successfully measured in almost all cases included.



- Define anatomy
 - After conventional risk stratification
 - Part of risk stratification

 Preliminary studies have found that FFR_{angio} when measured off-site by experienced operators correlates well with pressure wire-derived FFR.

 FFR_{angio} has not been well validated when performed on-site by independent, local operators blinded to pressure wire-derived FFR and compared with core laboratory analyzed FFR values in a large, prospective, multicenter fashion.

Patients undergoing coronary angiography

3 roll-in patients / site

350 study patients

380 patients in total

FFR of \geq 1 lesion as part of standard care

Reviewed by core-lab at CRF

Simultaneous blinded FFR_{angio} on-site

Reviewed by core-lab at CathWorks

Inclusion Criteria

 Adult patients with stable angina, unstable angina, or non-ST elevation acute coronary syndromes undergoing coronary angiography with coronary pressure wire-derived FFR measurement of a coronary stenosis

Clinical Exclusion Criteria

- STEMI within the past 12 months
- Prior CABG, valve surgery, or heart transplantation
- Severe aortic stenosis
- LV Ejection Fraction ≤ 45%

Angiographic Exclusion Criteria

- Left main stenosis > 50%
- Chronic total occlusion in target vessel
- < TIMI 3 flow in target vessel
 </p>
- In-stent restenosis or recent stent placement in target vessel
- Severe diffuse disease
- Target vessel receiving collaterals

