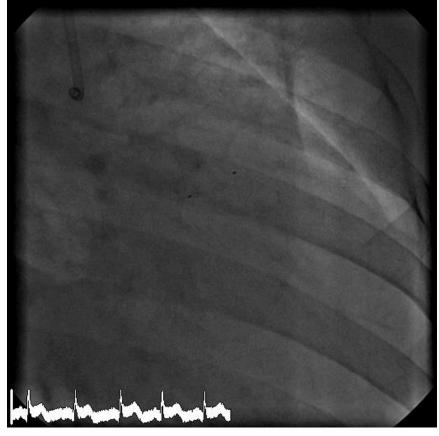
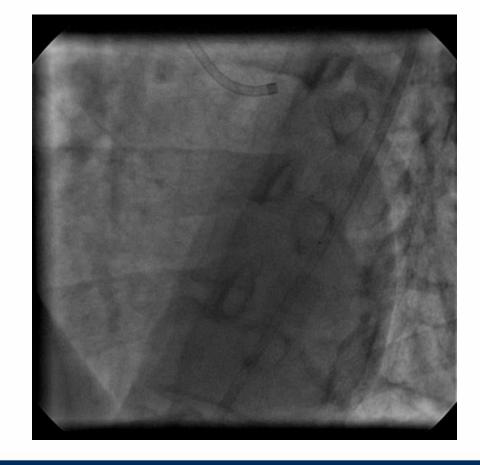


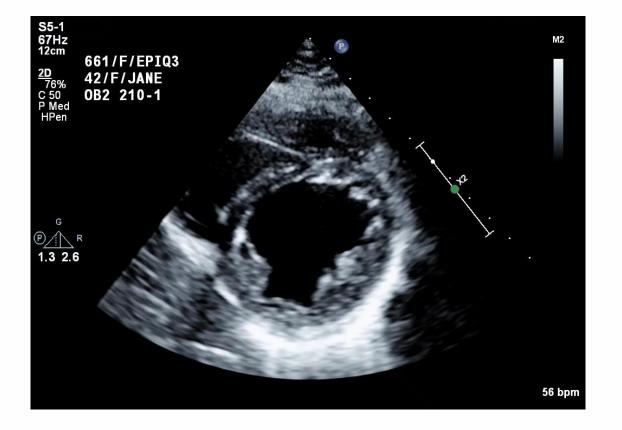
SPONTANEOUS CORONARY ARTERY DISSECTION

Mirvat Alasnag, FSCAI, FSCCT, FACP King Fahd Armed Forces Hospital, Jeddah @mirvatalasnag

Disclosures: None




- 35 year old female with no risk factors
- NSTEMI



- 7 years later: referred by OBGYN
- Pregnant 6 weeks
- No chest pain and euvolemic
- Echo: Unchanged (preserved LV systolic function)

DEFINITION

- Spontaneous coronary artery dissection (SCAD): a spontaneous tear in the coronary arterial wall that is not traumatic or iatrogenic
 - Contemporary terminology is confined to nonatherosclerotic causes
 - Underdiagnosed for decades, but with an increased clinical index of suspicion & greater use of intracoronary imaging (OCT & IVUS) diagnosis of SCAD improved.

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

© 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

PUBLISHED BY ELSEVIER

VOL. 70, NO. 9, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/i.jacc.2017.06.053

Spontaneous Coronary Artery Dissection

Clinical Outcomes and Risk of Recurrence

Jacqueline Saw, MD, a Karin Humphries, DSc, Eve Aymong, MD, Tara Sedlak, MD, Roshan Prakash, MBBS, Andrew Starovoytov, MD, G.B. John Mancini, MD

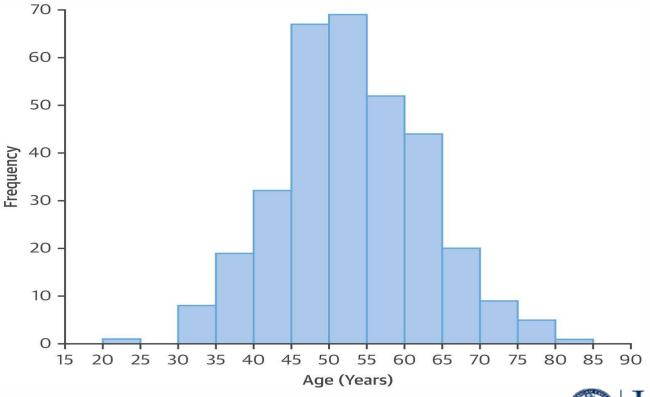
PATIENT PROFILES

	Patients (N - 32
Age, yrs	52.5 ± 9.6
Female	297 (90.8)
Body mass index, kg/m ²	24.4 (21.5-28.3
Race	
Caucasian	268 (82.0)
East Asian	35 (10.7)
South Asian	17 (5.2)
African Canadian	3 (0.9)
First nation	2 (0.6)
Diabetes mellitus	15 (4.6)
Dyslipidemia	84 (25.7)
Hypertension	119 (36.4)
Current smoker	32 (9.8)
Family history of coronary artery disease	109 (33.3)
Previous MI	3 (0.9)
Cerebrovascular disease	13 (4.0)
Hypothyroidism	43 (13.1)
Postmenopausal	169" (56.9)
Migraines	119 (36.4)
Depression	74 (22.6)
Anxiety	44 (13.5)

Values are mean \pm SD, n (%), or median (interquartile range). *n = 297.

	Patients (N - 327)
Acute coronary syndrome	327 (100.0)
STEMI	84 (25.7)
NSTEMI	243 (74.3)
Normal ECG	63 (19.3)
Nonspecific ST-T changes	46 (14.1)
T inversions	80 (24.5)
ST depression	19 (5.8)
ST elevation <1 mm	22 (6.7)
VT/VF	29 (8.9)
Ejection fraction, %	57.0 (50.0-64.0)
Ejection fraction <50%	70 (21.8)
Left ventricular wall motion abnormality	
None	47 (14.4)
Hypokinesis	191 (58.4)
Akinesis	68 (20.8)
Dyskinesis	17 (5.2)
Precipitating factors	
Emotional stress	158 (48.3)
Physical stress	92 (28.1)
Heavy isometric activities	39 (11.9)

Values are n (%) or mean (interquartile range).


ECG = electrocardiogram; NSTEMI = non-ST-segment elevation myocardial infarction; STEMI = ST-segment elevation myocardial infarction; VF = ventricular fibrillation; VT = ventricular tachycardia.

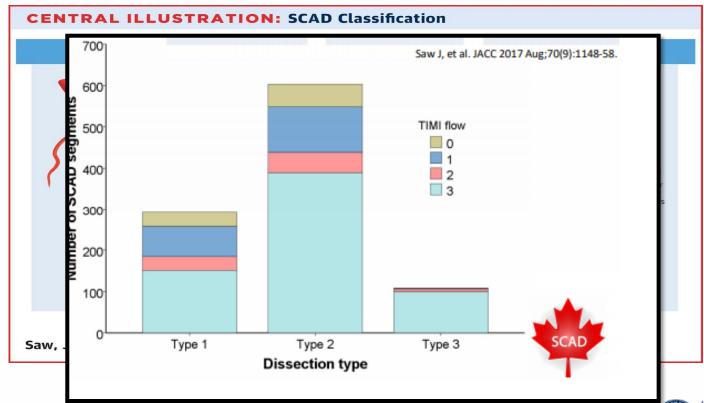
- myocardial infarction.

Jacqueline Saw et al. JACC 2017;70:1148-1158

2017 American College of Cardiology Foundation

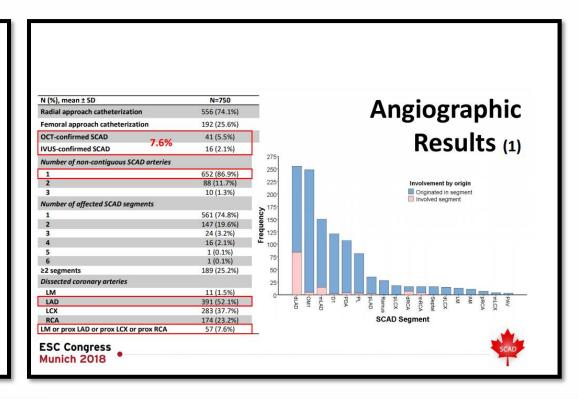
PREDISPOSING FACTORS

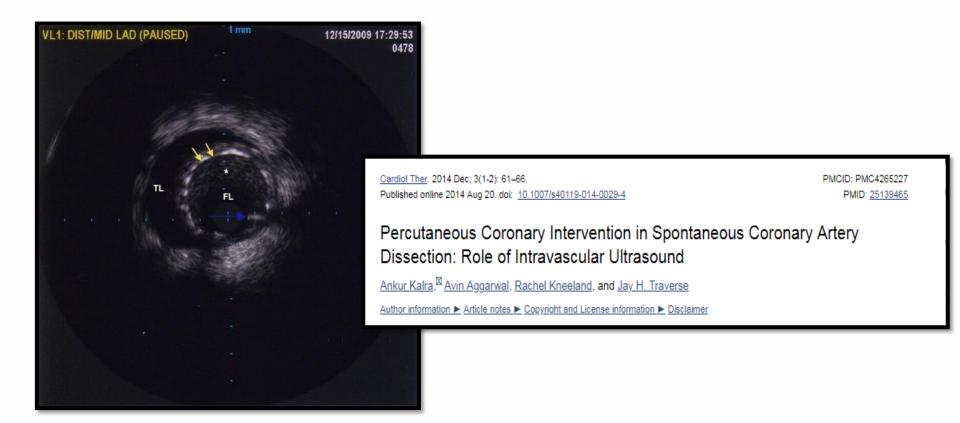
	Patients (N = 327)
FMD	205 (62.7)
Systemic inflammatory condition	39 (11.9)
Connective tissue disorder	16 (4.9)
On hormonal therapy	38 (11.6)
Postpartum	7* (2.4)
Multiparous (≥4 births)	25* (8.8)
Grand multiparity (≥5 births)	7* (2.4)
Grand multigravida (≥5 pregnancies)	39* (11.9)
Idiopathic	91 (27.8)



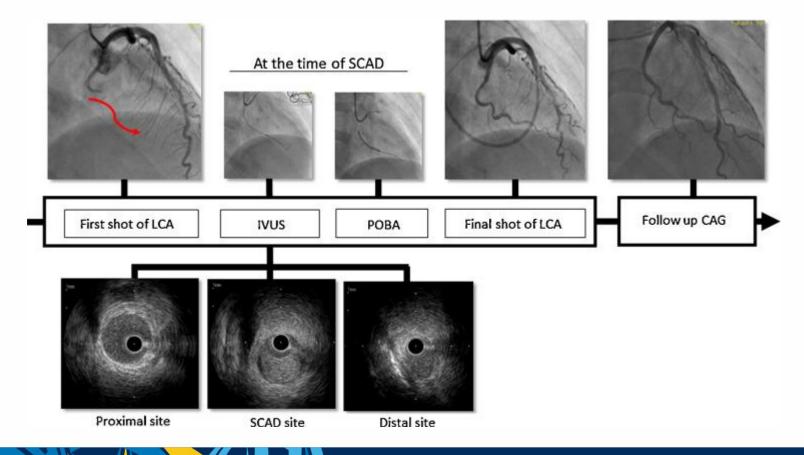
	Patients
Prevalence of FMD	327
FMD diagnosed	205 (62.7)
FMD not diagnosed	122 (37.3)
FMD possible	17 (5.2)
Incomplete screening	63 (19.3)
Screened cerebrovascular, renal, iliac	42 (12.8)
FMD vascular involvement	205
Renal arteries	139 (67.8)
Iliac arteries	114 (55.6)
Cerebrovasculature	100 (48.8)
Cerebral aneurysm	29 (14.1)
Values are n or n (%).	
FMD = fibromuscular dysplasia.	

Jacqueline Saw et al. JACC 2017;70:1148-1158

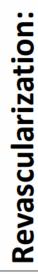

2017 American College of Cardiology Foundation


VESSEL PATTERN

	Patients (N = 327)
SCAD involving >1 coronary artery	46 (14.1)
Noncontiguous >1 artery involved	30 (9.2)
Coronary artery territory involved	387 dissections
Left main artery	2 (0.6)
Left anterior descending artery	175 (45.2)
Circumflex artery	123 (31.8)
Right coronary artery	89 (23.0)
SCAD lesion characteristics	387 dissections
Type 1 angiographic SCAD	99 (25.6)
Type 2 angiographic SCAD	270 (69.8)
Type 3 angiographic SCAD	18 (4.7)
Angiographic stenosis severity, %	78.4 ± 18.7
QCA dissection length, mm	42.7 ± 21.3
TIMI flow	
TIMI O	51 (13.2)
TIMI 1	31 (8.0)
TIMI 2	46 (11.9)
TIMI 3	259 (66.9)



At the time of SCAD Final shot after Follow up CAG First shot of LCA Hematoma shift after stenting proximal stenting Proximal site SCAD site Distal site



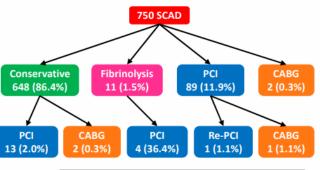

OUTCOMES

TABLE 6 In-Hospital and Follow-Up MACE Patients (N = 327) In-hospital events 0 (0.0) Death MI 15 (4.6) Stroke/TIA 5 (1.5) Unplanned revascularization 14 (4.3) Cardioversion or ICD 9 (2.8) Overall major adverse events 24 (7.3) Long-term events Death 0.3 MI 4.8 Recurrent de novo SCAD 2.8 Stroke/TIA 0.3 Revascularization 1.5 5.8 Overall MACE Angina hospitalization 2.0 Values are n (%) or %/yr. ICD = implantable cardioverter-defibrillator; MACE = major adverse cardiac events: TIA = transient ischemic attack: other abbreviations as in Tables 1 and 3.

PCI Strategy [n(%)]	N=750
Treatment strategy	
Conservative	632 (84.3%)
Fibrinolysis	11 (1.5%)
Revascularization (PCI or CABG)	110 (14.7%)
PCI	106 (14.1%)
CABG	5 (0.7%)
SCAD PCI Procedures & Outcomes	N=103
Wiring only	15 (14.6%)
Balloon angioplasty	21 (20.4%)
- Cutting balloon	5 (4.9%)
Stent placement	67 (65.0%)
Number of stents implanted	
1	21/67 (31.4%)

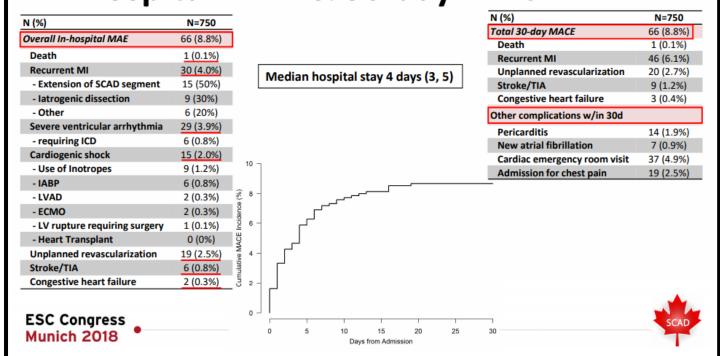
23/67 (34.1%) 15/67 (22.4%)

8/67 (11.9%)

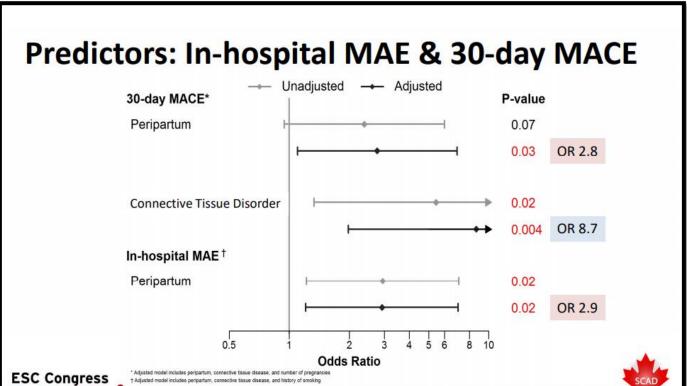
Rationale for revascularization [n(%)]	N=110
Ongoing chest pain	43 (39.1%)
Ongoing ischemia on ECG	38 (34.5%)
Dissection causing severe stenosis	35 (31.8%)
Proximal LAD, RCA, or LCX dissection	25 (22.7%)
Large artery (>3mm) dissection	16 (14.5%)
latrogenic catheter-induced dissection	10 (9.1%)
Left main dissection	9 (8.2%)
Ventricular arrhythmia	8 (7.3%)
Recurrent chest pain in-hospital	6 (5.5%)
Hemodynamic instability (shock)	6 (5.5%)
Multiple coronary dissections	6 (5.5%)

PCI Outcomes [n(%)]	N=750
Final TMI Flow	
0	16 (15.7%)
1	6 (5.9%)
2	13 (12.7%)
3	67 (65.7%)
PCI effect on TIMI flow	
Improved	59 (57.6%)
Unchanged	40 (38.8%)
Worse	4 (3.9%)
Propagation of SCAD during PCI	33 (32.0%)
Overall PCI success	
Successful	30 (29.1%)
Partial success	42 (40.8%)
Unsuccessful	31 (30.1%)

4 or more


ESC Congress

Munich 2018



In-hospital MAE & 30-day MACE

Rx

TABLE 7 Medications at Discha

Aspirin

Clopidogrel (or other ADP antagonist)

Beta-blocker

Calcium-channel blocker

Statin

ACE inhibitor/ARB

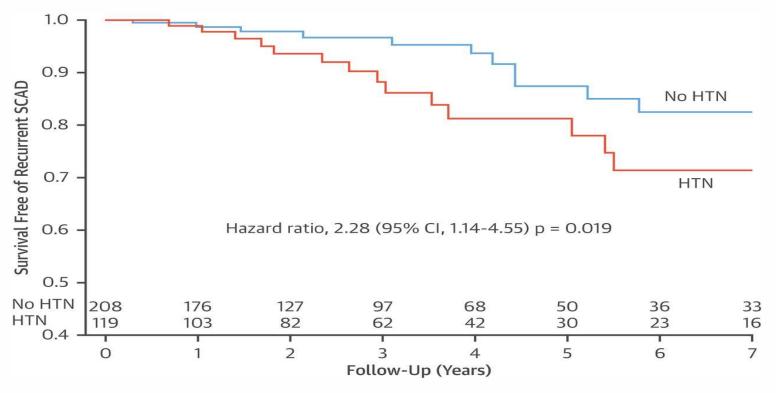
Nitroglycerin

Values are n (%). *Incomplete data for 3

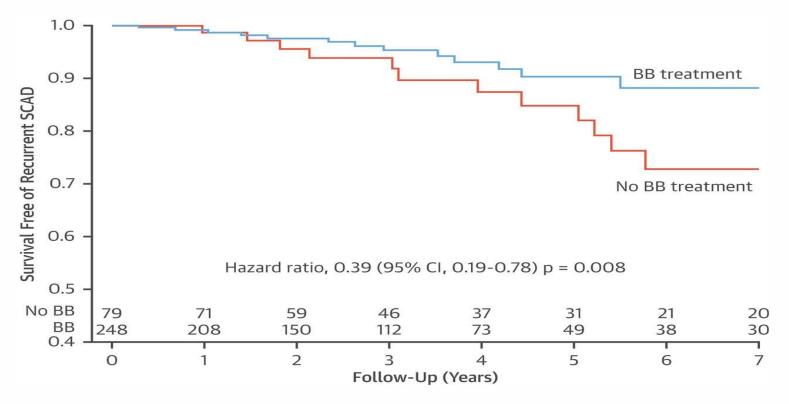
ACE = angiotensin-converting enz

ARB = angiotensin-receptor blocker.

Medications: At Discharge & Follow-up


	Discharge N=749	Last follow-up N=749
ASA	702 (93.7)	668 (89.2)
Clopidogrel (or other ADP antagonist)	505 (67.4)	268 (35.8)
Beta-blocker	632 (84.8)	592 (79.0)
ACE inhibitor/ARB	430 (57.4)	361 (48.2)
Statin	413 (55.1)	300 (40.1)
Nitroglycerin	110 (14.7)	62 (8.3)
Calcium-channel blocker	78 (10.4)	72 (9.6)
Oral anticoagulant	19 (2.5)	41 (5.5)

ESC Congress Munich 2018


Jacqueline Saw et al. JACC 2017;70:1148-1158

2017 American College of Cardiology Foundation

Jacqueline Saw et al. JACC 2017;70:1148-1158 2017 American College of Cardiology Foundation

CONCLUSIONS In our large prospectively followed SCAD cohort, long-term cardiovascular events were common. Hypertension increased the risk of recurrent SCAD, whereas beta-blocker therapy appeared to be protective. (J Am Coll Cardiol 2017;70:1148-58) © 2017 by the American College of Cardiology Foundation.

In our large, prospectively followed SCAD cohort, a predominantly conservative treatment strategy was associated with low in-hospital adverse events. However, long-term cardiovascular events were common, especially recurrent MI due to recurrent SCAD. Hypertension was significantly associated with an increased risk of recurrent SCAD, whereas beta-blocker use was significantly associated with reduced risk of recurrent SCAD.

Areas for Further Exploration

- Role of Cardiac CT
- Duration of hospitalization and Follow up
- Current and future pregnancies

