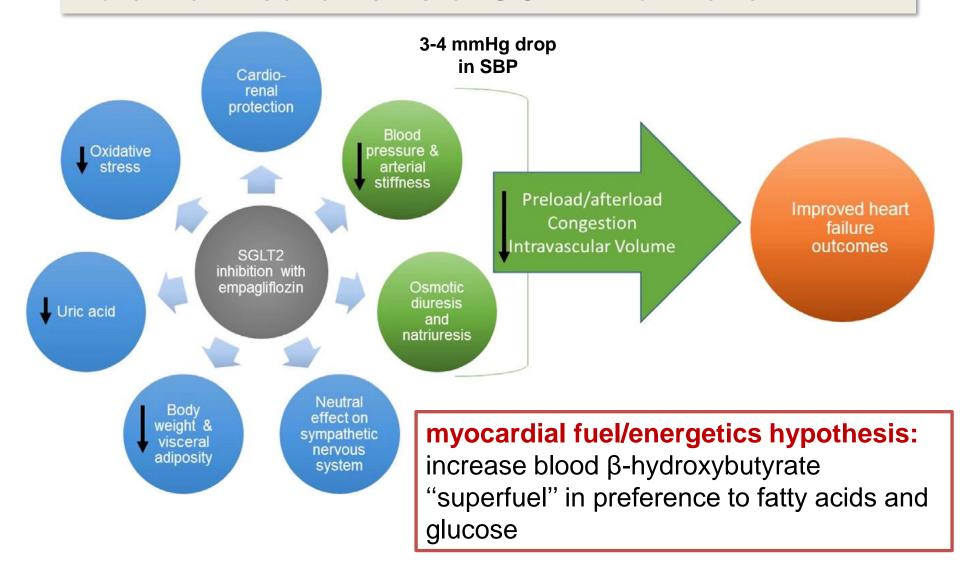


Sodium-glucose cotransporter inhibitors (SGLT-2i)

Canagliflozin
Dapagliflozin
Empagliflozin

urinary glucose excretion

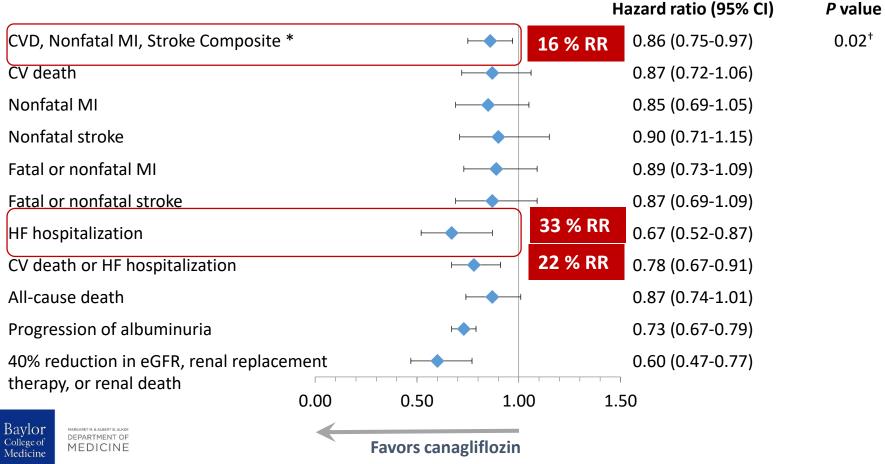
plasma glucose



sodium-glucose cotransporter inhibitors reduce renal glucose reabsorption, increase urinary glucose,
HAS MILD NATRIURETIC DIURETIC EFFECT AND RESULTS IN WEIGHT LOSS
increases in hemoglobin and hematocrit concentrations

Potential Mechanisms of SGLT2i for Benefit in HF

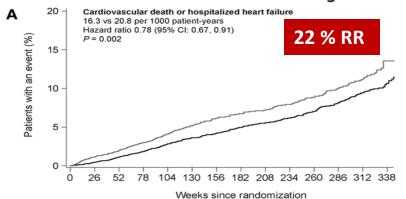
CANVAS Trials


(Canagliflozin on CV, renal, and safety outcomes)

- CANVAS Program: 10,142 participants with DM II & high CV risk, canagliflozin vs placebo
- Primary: Composite CVD, nonfatal MI, or nonfatal stroke
- Mean age 63.3 years, 35.8% were women
- 66% had a hx of CVD, 14 % had hx of HF
- HF patients were more frequently women, white, and hypertensive and had a history of prior CVD. Usually treated with β-blockers, RAS antagonists, diuretics

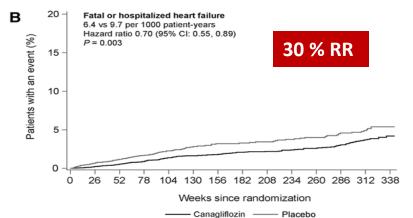
Clinical Outcomes with Canagliflozin: CANVAS Program (N=10,142) CVD and Renal

Median follow-up: 2.4 years

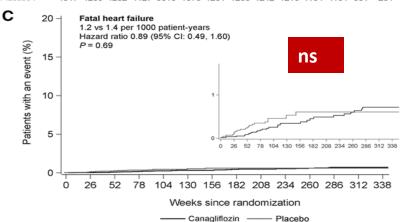

*CV death, nonfatal MI, or nonfatal stroke. †Superiority. Neal B et al. N Engl J Med; 377:644-657

ORIGINAL RESEARCH ARTICLE

Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus


Results From the CANVAS Program

—— Canagliflozin —— Placebo


No. at risk :

Canagliflozin: 5795 5733 5655 5567 4442 3064 2647 2614 2577 2545 2503 2453 1782 490 Placebo: 4347 4269 4202 4127 3015 1673 1281 1283 1242 1215 1184 1161 831 234

No. at risk :

Canagliflozin: 5795 5732 5653 5562 4435 3057 2641 2607 2569 2538 2497 2450 1781 490 Placebo: 4347 4266 4195 4119 3008 1665 1271 1255 1235 1209 1179 1157 829 233

D 20 - Hospitalized heart failure 5.5 vs 8.7 per 1000 patient-years Hazard ratio 0.67 (95% CI: 0.52, 0.87)

P = 0.002

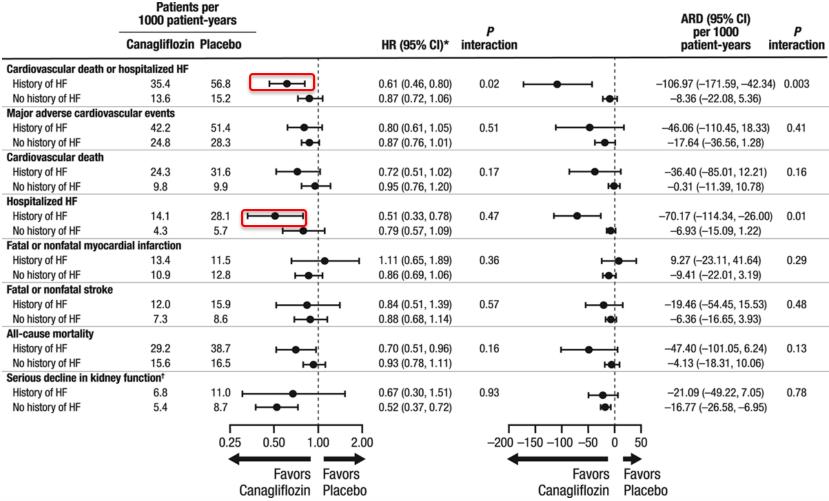
33 % RR

10 - 33 % RR

Weeks since randomization

No. at risk :

Canagliflozin: 5795 5768 5723 5676 4573 3178 2759 2732 2707 2685 2650 2613 1903 532 Placebo: 4347 4315 4275 4230 3116 1756 1352 1341 1327 1308 1290 1279 924 258


No. at risk : Canagliflozin : 5795 5732 5653 5564 4437 3059 2643 2610 2572 2540 2498 2451 1782 490 Placebo : 4347 4267 4198 4123 3011 1667 1274 1256 1236 1210 1180 1158 829 233

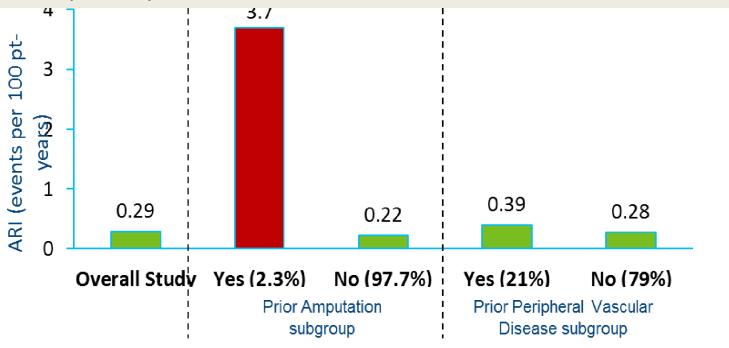
Canagliflozin ---- Placebo

Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus, Volume: 138, Issue: 5, Pages: 458-468, DOI: (10.1161/CIRCULATIONAHA.118.034222)

Benefits Greater with History of HF

Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus, Volume: 138, Issue: 5, Pages: 458-468, DOI: (10.1161/CIRCULATIONAHA.118.034222)

Adverse Events with Canagliflozin


CANVAS Program* Safety Results

Event	Canagliflozin	Placebo	P value	
	Events / 1000-patient years			
All serious adverse events	104.3	120.0	0.04	
A/E leading to discontinuation	35.5	32.8	0.07	
Diabetic ketoacidosis (adjudicated)	0.6	0.3	0.14	
Events of interest occurring in significantly more canagliflozin-treated patients				
Amputation	6.3	3.4	<0.001	
Bone fracture (adjudicated)				
All	15.4	11.9	0.02	
Low trauma	11.6	9.2	0.06	
Infection of male genitalia	34.9	10.8	<0.001	
Osmotic diuresis [†]	34.5	13.3	<0.001	
Volume depletion [†]	26.0	18.5	0.009	
Mycotic genital infection in women [†]	68.8	17.5	<0.001	

CANVAS Program

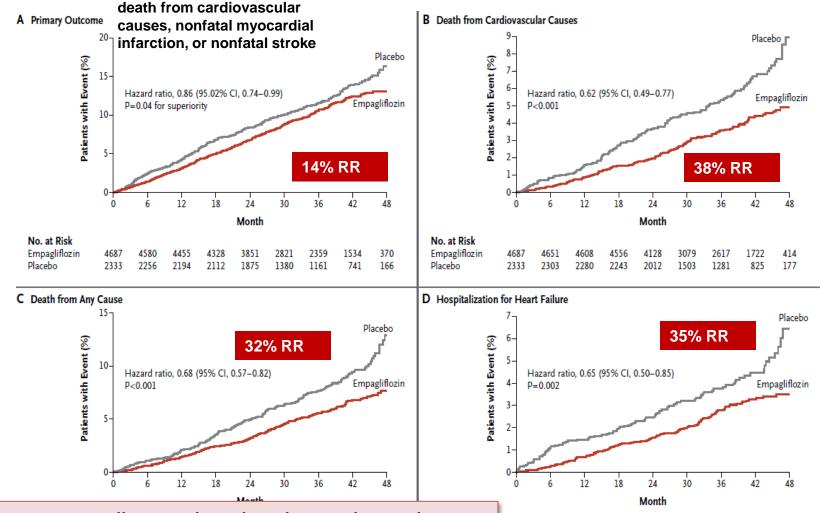
Absolute Amputation Risk Increase: Overall and in Subgroups

Overall amputation risk: **HR: 1.97**; 95% CI 1.41 to 2.75; compared to placebo Amputations were primarily at the level of the toe or metatarsal

ARI (Absolute risk increase (difference between canagliflozin and placebo amputation event rates per 100 patient years), adapted from Neal B et al. NEJM

Adverse Events

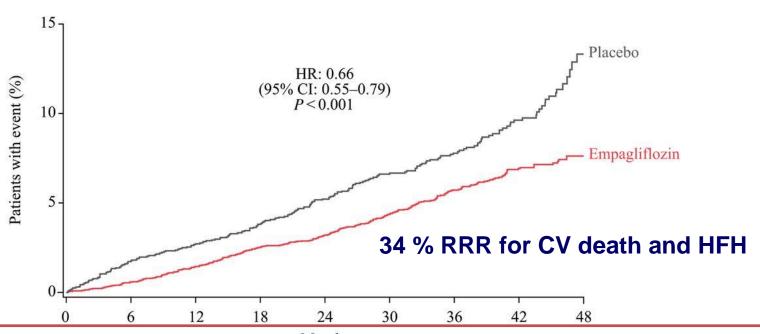
- Similar risk of amputation with canagliflozin in population based studies (Easel Study, Udell JA, et al. Circulation 117.031227, Duelle JA, et al. Circulation. 2017)
- Not seen in EMPA-REG OUTCOME trial of empagliflozin
- Mechanism unclear: Reduced tissue perfusion, hypovolemia?



EMPA-REG OUTCOME TRIAL Empagliflozin, CV Outcomes and Mortality in Type 2 Diabetes

7028 patients with DM with CV Risk (history of MI or stroke, CAD with USA, ischemia and PAD).

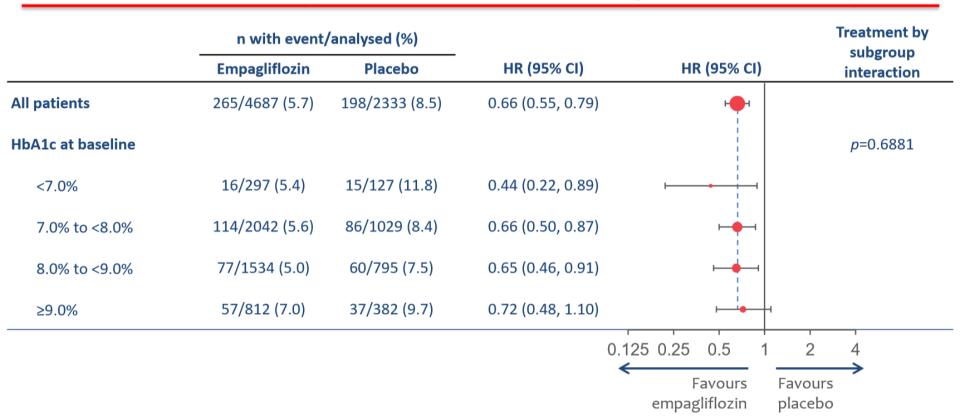
76 % CAD, majority on ACEI, ARB, BB.


outcome curves diverged early – hemodynamic effects rather than glucose control effects?

N Engl J Med. 373:2117-28.

HF Outcomes-EMPA-REG OUTCOME TRIAL

~ 10% had pre- existing HF, 43% on loop diuretics at baseline

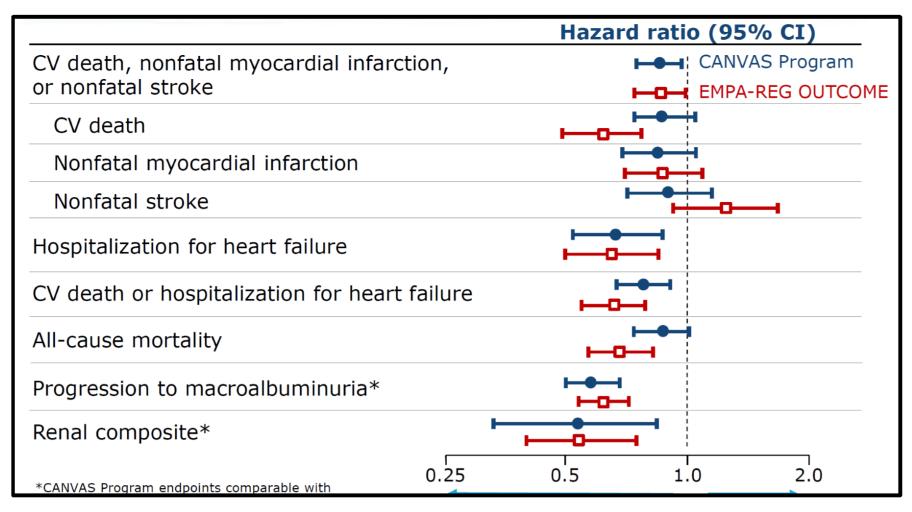

Time to first HFH or CVD

- Weight reduced by ~2 kg in both empardose groups
- ↓SBP and ↑ in hemoglobin and hematocrit with empagliflozin
- Introduction of loop diuretics lower in the empagliflozin (8.6% vs 13.3%, HR 0.62).

No measure of LVEF, no data on HFrEF vs HFpEF, or BNP

Reduction in risk of HHF or CV death was consistent across subgroups by baseline HbA1c HHF or CV death by HbA1c at baseline; post hoc analysis

Indirect evidence suggests non-diabetes patients with heart failure may benefit from empagliflozin

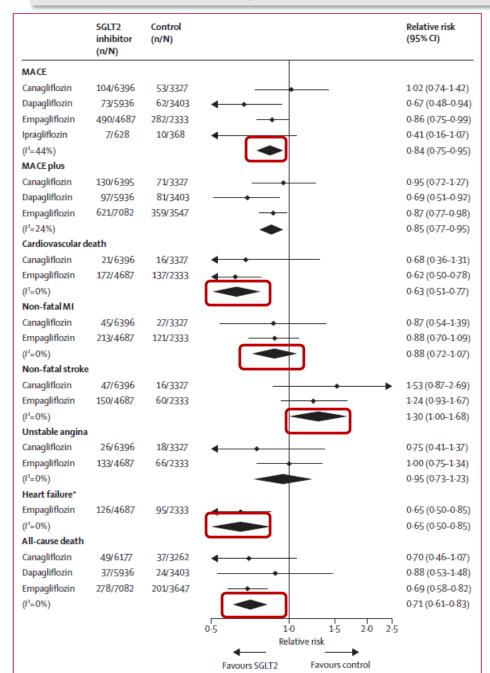

Adverse events

	Placebo	Empagliflozin
Genital Infection	1.8 %	6.4 % *
Complicated UTI	1.8 %	1.7% ns
Edema	9.3% *	4.5 %
Volume depletion	4.9 %	5.1 % ns
ARF	6.6 % *	5.2 %
Any AE	91.7 % *	90.2 %
SAE	42.3 % *	38.2%

Prescribing information:

- Possible increased risk of symptomatic hypotension or volume depletion in patients with renal impairment, elderly or lower SBP
- Increased risk for bone fractures associated with osteoporosis
- Restricted to patients with GFR >45 mL/min/1.73 m2

EMPA REG and CANVAS compared



Zinman B et al. N Engl J Med; 373: 2117-28 Neal

B et al. N Engl J Med; 377: 644-657

Meta-Analysis of GLT-2 Inhibitors on CV Events in DM

- Overall beneficial effects on MACE and CV death
- Effect on MI: ns
- Strong protective effect for HF

J.H. Wu, *et al.* Effects of sodium–glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol, 4 (2016), pp. 411–419

Primary and Secondary Prevention of HF with SGLT2i

Stage A: At Risk HF

Stage B:
Structural
Heart
Disease

Stage C: Prevalent HF Stage D: Advanced HF

3

Ongoing SGLT2i Trials in HF

	EMPEROR-Preserved ¹	EMPEROR-Reduced ²	Dapa-HF ³	SOLOIST-WHF ^{4,5}	
Sample size	4126	2850*	4500	40004 (6667?)5	
Key inclusion criteria	 Chronic HF[†] Elevated NT-proBNP eGFR ≥20 ml/min/1.73 m² 		 Symptomatic HFrEF[†] Elevated NT-proBNP eGFR ≥30 ml/min/1.73 m² 	 Type 2 diabetes Chronic HF Elevated NT-proBNP Hospital admission for worsening HE and 	
_	HFpEF (LVEF >40%)	HFrEF (LVEF ≤40%)	HFrEF (LVEF ≤40%)	worsening HF and haemodynamically stable	
Primary endpoint	 Time to first event of adjudicated CV death or adjudicated HHF 		 Time to first occurrence of CV death, HHF or urgent HF visit 	 Time to first event of CV death or HHF (both EF<50% and II) 	
Key secondary endpoints	 Individual components of primary endpoint All-cause mortality All-cause hospitalisation Time to first occurrence of sustained reduction of eGFR Change from baseline in KCCQ 		 Total number of CV death or HHF All-cause mortality Composite of ≥50% sustained eGFR decline, ESRD or renal death Change from baseline in KCCQ 	 Total number of CV death, HHF or urgent HF visit Composite of ≥50% sustained eGFR decline, chronic dialysis, renal transplant or sustained eGFR <15 ml/min/1.73 m² 	
Start date	March 2017	March 2017	February 2017	June 2018	
Expected completion date	June 2020	June 2020	December 2019	January 2021	

^{*}NT-proBNP-based enrichment of the population with patients at higher severity of HF; †NYHA class II–IV ESRD, end-stage renal disease; HHF, hospitalisation for heart failure; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro–B-type natriuretic peptide

- 1. ClinicalTrials.gov NCTo3057951; 2. ClinicalTrials.gov NCTo3057977; 3. ClinicalTrials.gov NCTo3036124; sotagliflozin
- 4. ClinicalTrials.gov NCT03521934; 5. EU Clinical Trials Register 2017-003510-16. Available at: https://www.clinicaltrialsregister.eu

<u>Brief History – Glucose Lowering Drugs Approval</u>

- 2008 FDA mandated assessment of CV safety of all antihyperglycemic agents in RCTs
 - noninferiority studies :study drug not associated with more MACE than placebo
 - (Some tested for superiority if noninferiority met)
 - Primary endpoint: composite of CVD, nonfatal MI, and nonfatal stroke
 - HF end points were not mandated

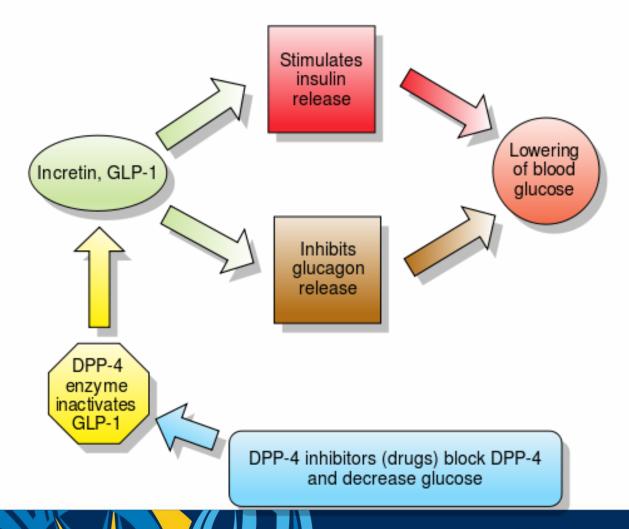
Summary

SGLT2i

- 15% reduction in MACE
- 35% reduction in HF hospitalization
- Favorable effects on kidney function
- Potential PVD safety signal for canagliflozin

HF should be a safety and efficacy outcome in DM trials

Safety and Efficacy with Other Glucose Lowering Medications in HF



Risk of HF is Increased With Thiazolidinediones

	Risk Ratio (95% Confidence Interval)			
Risk of CHF	Decreased Risk	Thereased Risk	Weight	Risk Ratio (95% CI)
ADOPT (RSG)			12.0%	1.49 (0.62, 3.53)
Dargie et al. (RSG)			7.3%	1.81 (0.55, 6.02)
Mazzone et al. (Pio)			1.1%	2.97 (0.12, 72.63)
DREAM (RSG)			5.0%	7.00 (1.59, 30.76)
PPAR (RSG)			1.2%	2.88 (0.12, 69.94)
PROactive (Pio)			49.0%	1.31 (1.03, 1.67)
RECORD (RSG)			23.5%	2.24 (1.27, 3.96)
TOTAL			100.0%	1.72 (1.21, 2.42)

Test for overall effect: p = 0.002

Glucagon Like Peptide 1 (GLP-1)

DPP-4 Inhibitor Trials

SAVOR TIMI 53

EXAMINE

The NEW ENGLAND JOURNAL of MEDICINE

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

ORIGINAL ARTICLE

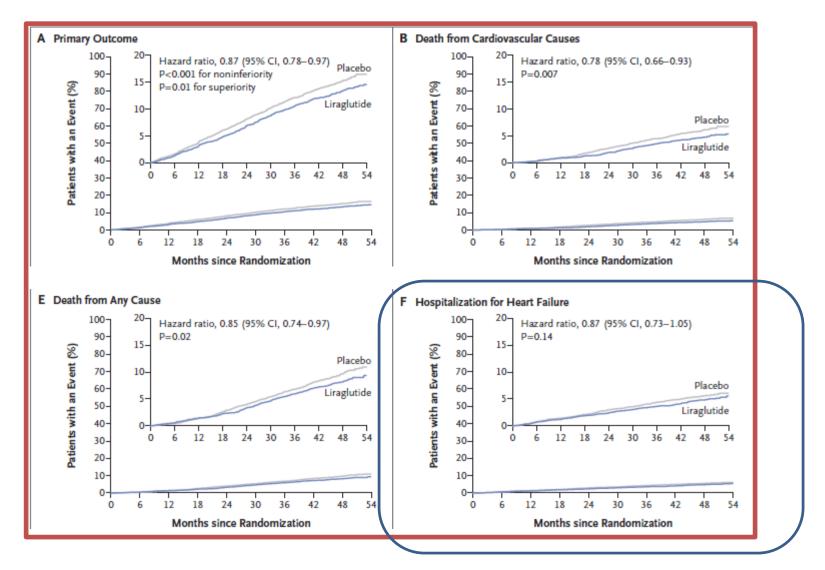
Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus

Benjamin M. Scirica, M.D., M.P.H., Deepak L. Bhatt, M.D., M.P.H., Eugene Braunwald, M.D., P. Gabriel Steg, M.D., Jaime Davidson, M.D., Boaz Hirshberg, M.D., Peter Ohman, M.D., Robert Frederich, M.D., Ph.D., Stephen D. Wiviott, M.D., Elaine B. Hoffman, Ph.D., Matthew A. Cavender, M.D., M.P.H., Jacob A. Udell, M.D., M.P.H., Nihar R. Desai, M.D., M.P.H., Ofri Mosenzon, M.D., Darren K. McGuire, M.D., Kausik K. Ray, M.D., Lawrence A. Leiter, M.D., and Itamar Raz, M.D., for the SAVOR-TIMI 53 Steering Committee and Investigators*

Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes

William B. White, M.D., Christopher P. Cannon, M.D., Simon R. Heller, M.D., Steven E. Nissen, M.D., Richard M. Bergenstal, M.D., George L. Bakris, M.D., Alfonso T. Perez, M.D., Penny R. Fleck, M.B.A., Cyrus R. Mehta, Ph.D., Stuart Kupfer, M.D., Craig Wilson, Ph.D., William C. Cushman, M.D., and Faiez Zannad, M.D., Ph.D., for the EXAMINE Investigators*

☆ HF Hospitalization

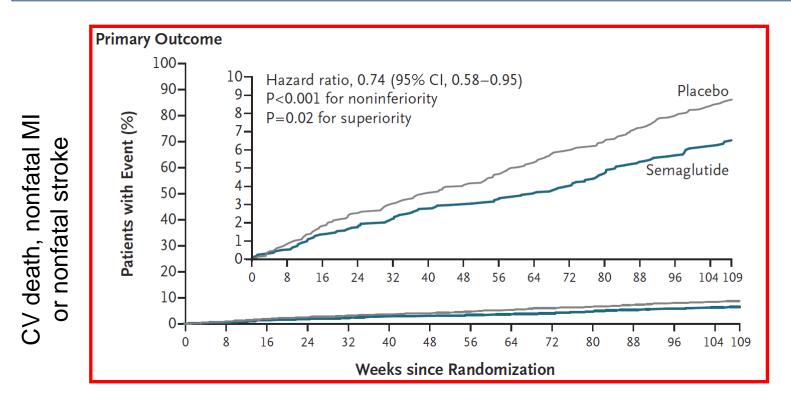

- 3.5% vs 2.8% over median 2.1 yrs
- HR 1.27 (95% CI 1.01 to 1.51,p=0.007)

Previous HF, estimated GFR <60 ml/min, elevated BNP, and albumin/creatinine ratio were the strongest predictors of HF hospitalization

HF not reported in main manuscript, Posthoc analysis: HFH or CVD and HFH not different

N Engl J Med, 369 2013, p. 1327–1335 F. Zannad, Lancet, 2015 23;385(9982):2067-76.

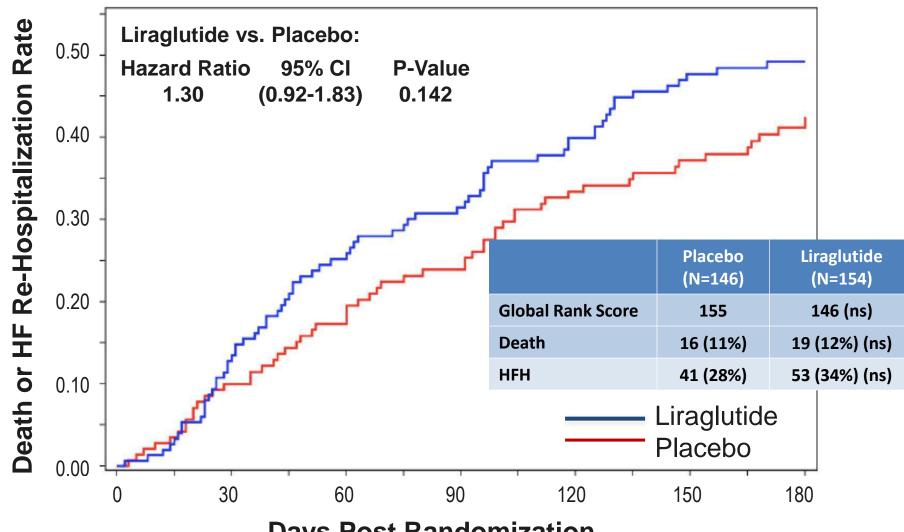
Liraglutide and CV Outcomes in DM with CVD Risk: LEADER



Reduced CV death, nonfatal MI or stroke. HFH Not Different

Marso et al. New Engl J Med July 28 2016

SUSTAIN-6: Longer Acting GLP-1 agonist (sc/week) semaglutide; also with CVD benefit, no effect on HFH


- Approximately 24 % patients with hx of HF
- 26% lower risk CV death, nonfatal MI or nonfatal stroke
 - 39% decrease in nonfatal stroke
 - 26% reduction in nonfatal MI (ns)
- HFH not different

Marso S. et al . September 16, 2016, NEJM

GLP-1 post ADHF (FIGHT): NHLBI HF Network: Trend for Increase in Death or HFH

Time to Death or HF Re-Hospitalization Through Day 180 Assessment

Days Post Randomization

Marguiles K et al. JAMA. 2016;316(5):500-508.