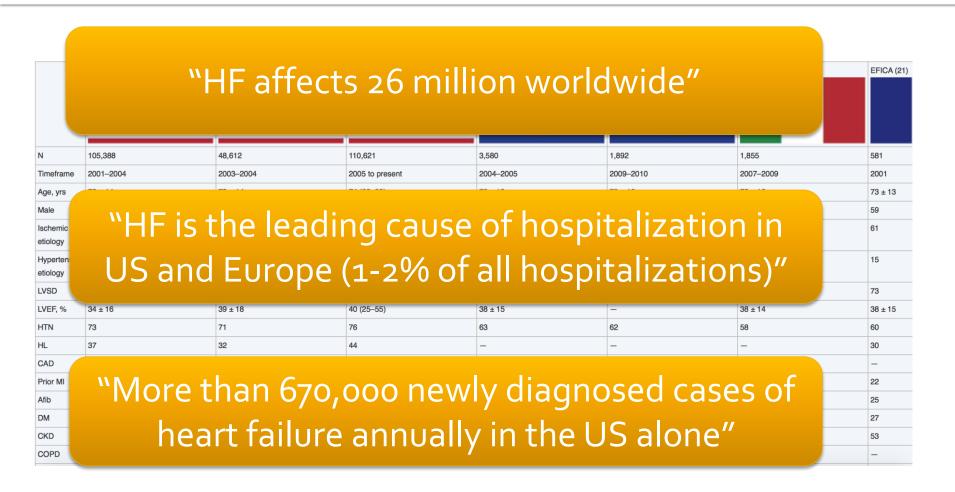
Incorporating Biomarkers in Daily Practice

No Disclosures


Outline

- Definition of biomarkers
- Interest in biomarkers in heart failure
- Major biomarkers utilized in clinical practice
- BNP and NT pro BNP
- Role in Diagnosis in acute setting
- Chronic setting
- Prognosis
- Prevention
- Caveats
- HsTNI
- Future outlook for biomarkers in clinical practice

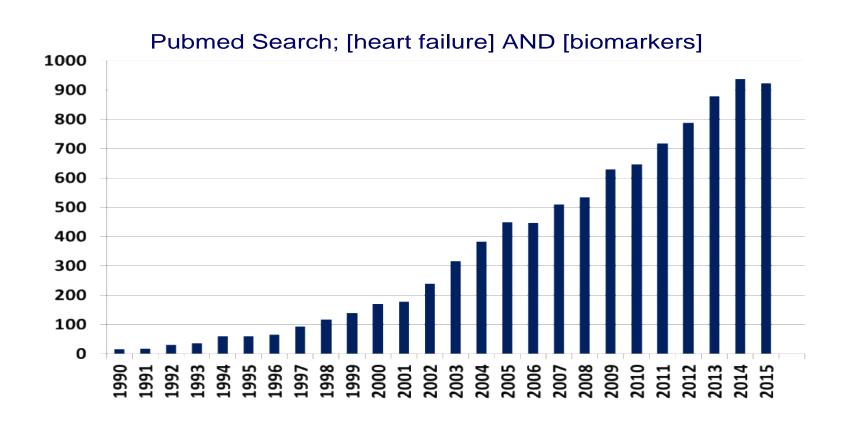
What are biomarkers

- WHO definition
- "Any substance, structure, or process that can be measured in the body or its product and influence or predict the incidence of outcome or disease"
- "Effect into treatment and intervention"
- Thoroughly studies and validated
- Robust
- Reflect the pathophysiology of that disease
- Provide additive information
- Additive value in diagnosis, treatment and screening.

How big is the problem and how serious is it?

Outcome statistics...

 ~50% of patients die within one year of diagnosis..


NEED TO ID THOSE

PATIENTS THAT ARE AT RISK

, DIAGNOSE, AND BETTER

MANAGE THEM

Research on Biomarkers...

List of biomarkers studied in HF

Myocardial Insult	
,,	NT-proBNP, BNP, MR-proANP
Myocardial Injury	Troponin T, troponin I, myosin light- chain I, heart-type fatty-acid protein, CKMB
Oxidative stress	Myeloperoxidase, uric acid, oxidized low-density lipoproteins, urinary biopyrrins, urinary and plasma isoprostanes, plasma malodialdehyde
Neurohormonal Activation	
	Renin, angiotensin II, aldosterone
Sympathetic nervous system	Norepinephrine, Chromogranin A, MR-proADM
Arginine vasopressin system	Arginine vasopressin, copeptin
<u> </u>	ET-1, big proET-1
Remodeling	
To Classon at i an	C-reactive protein, TNF-α, soluble TNF receptors, Fas, interleukins (I, 6 and 18), osteoprotegerin, adiponectin
Hypertrophy/Fibrosis	Matrix metalloproteinases, collagen propeptides, galectin-3, soluble ST2
прорюзіз	GDF-15
Comorbidities	
B 16	Creatinine, BUN, eGFR, cystatin C, β-trace protein
Renal Injury markers	NGAL, KIM-1, NAG, liver-type fatty acid binding protein, IL-18
Hematologic biomarkers	Hemoglobin, RDW, iron deficiency (ferritin, transferrin sat)
LFTs	

Gaggin et al, 2015

Biomarkers and HF...

ACC/AHA/HFSA FOCUSED UPDATE

2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America

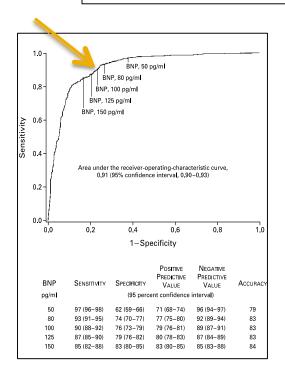
6. INITIAL AND SERIAL EVALUATION OF THE HF PATIENT

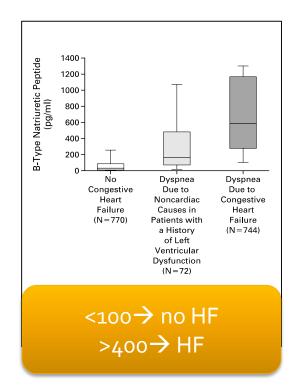
6.3. Biomarkers

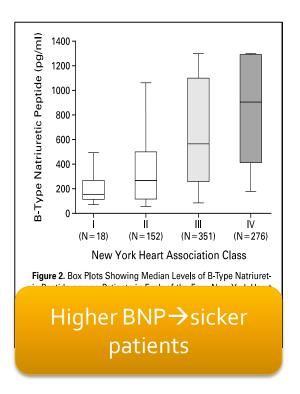
Table 1. 2017 ACC/AHA/HFSA Clinical Practice Guideline Recommendations for the Use of Biomarkers in the Management of HF⁷

Biomarkers	Indication for Use	Recommendation	Evidence
BNP or NT-proBNP	Diagnosis	I	Α
	Hospital admission prognosis	I	А
	Prevention	lla	В
	Hospital discharge	lla	R
	p 5		
			_
	Guided therapy (chronic HF)	llb	В
Troponin T or I		IIb	А

ACC indicates American College of Cardiology; AHA, American Heart Association; BNP, B-type natriuretic peptide; HF, heart failure; HFSA, Heart Failure Society of America; NT-proBNP, N-terminal pro-B-type natriuretic peptide; and sST2, soluble ST2.


ACC, 2017; Ibrahim et al, Circ Res, 2018


NP.. When to use in HF..


- BNP and NT pro BNP
- Mainly for assessment of patients with shortness of breath
- Its utility in the ED
- Its applicability in the OPD setting

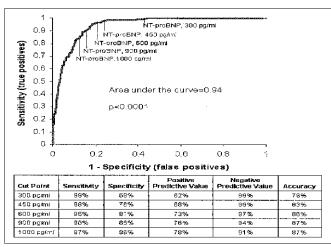
Biomarkers in the ED...

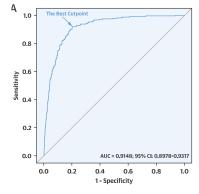
RAPID MEASUREMENT OF B-TYPE NATRIURETIC PEPTIDE IN THE EMERGENCY DIAGNOSIS OF HEART FAILURE

Maisel et al, NEJM, 2002

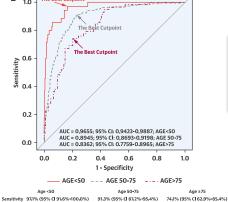
More evidence

The N-Terminal Pro-BNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study




FIGURE 4. NT-proBNP was highly sensitive and specific for the diagnosis of acute CHF, with a highly significant area under the curve. A strategy of partitioning patients in age categories of < 50 and > 50 years (with cutpoints of 450 and 900 pg/ml, respectively) was optimal, with areas under the curve of 0.98 and 0.93, respectively (p < 0.0001 for the 2 categories).

	Optimal Cutpoint (pg/m l)	Sensitivity (%)	Specificity (%)	Positive Predictive Value (%)	Negative Predictive Value (%)	Accuracy (%)
Rulain cutnoints						
All patients (n = 599)	900	90	85	76	94	87
<50 yrs old (n = 144)	450	93	95	67	99	95
≥50 yrs old (n = 455)	900	91	80	77	92	85
A ll patients (n = 599)	300	99	68	62	99	83


Further evidence...

N-Terminal Pro-B-Type Natriuretic Peptide in the Emergency Department

The ICON-RELOADED Study

anuzzi, Jr., J.L. et al. J Am Coll Cardiol. 2018;71(11):1191-200.

	Category	Cutpoint, pg/ml	Sensitivity	Specificity	PPV	NPV	LR+	LR-	
	Confirmatory ("rulo in") cut	points							
	<50 yrs (n = 462)	450	85.7 (74.1-97.3)	93.9 (91.6-96.2)	53.6 (43.7-63.2)	98.8 (97.3-99.4)	14.08 (8.48-19.67)	0.15 (0.03-0.28)	
	50-75 yrs (n = 833)	900	79.3 (73.5-85.2)	84.0 (81.2-86.8)	58.4 (53.7-63.0)	93.5 (91.5-95.0)	4.95 (4.00-5.90)	0.25 (0.18-0.32)	
	>75 yrs (n = 166)	1,800	75.9 (64.8-86.9)	75.0 (66.8-83.2)	62.0 (53.3-70.0)	85.3 (78.4-90.2)	3.03 (1.94-4.13)	0.32 (0.17-0.47)	
-	KIIIBAN AVOLUUM — 171811		/9 // 1 // /=X// /)	XM / IX/I X-XX //	3×///3//3-6///	u// / Iux 5_u5 x1	5 00 15 115_K 041	/\	
ı	Exclusionary ("rule-out") cu	tpoint							
ı	All patients (n = 1,461)	300	93.9 (91.0-96.7)	71.7 (69.1-74.3)	43.7 (41.4-46.1)	98.0 (96.9-98.8)	3.32 (3.00-3.63)	0.09 (0.05-0.13)	
L									

iensitivity 92.1% (95% Cl 88.9%-95.2%)
ipecificity 79.6% (95% Cl 77.4%-81.9%)
iPV 51.4% (95% Cl 48.5%-54.3%)
iPV 97.7% (95% Cl 96.6%-98.5%)
iCcuracy 82.0% (95% Cl 80.0%-84.0%)

 Sensitivity
 937% (95% CI 8232-95-85-4%)
 743% (95% CI 8232-95-85-4%)
 743% (95% CI 8232-95-85-4%)

 Specificity
 83.6% (95% CI 8031-85-87)
 720% (95% CI 2328-96-33)
 736% (95% CI 2024-9322-4%)

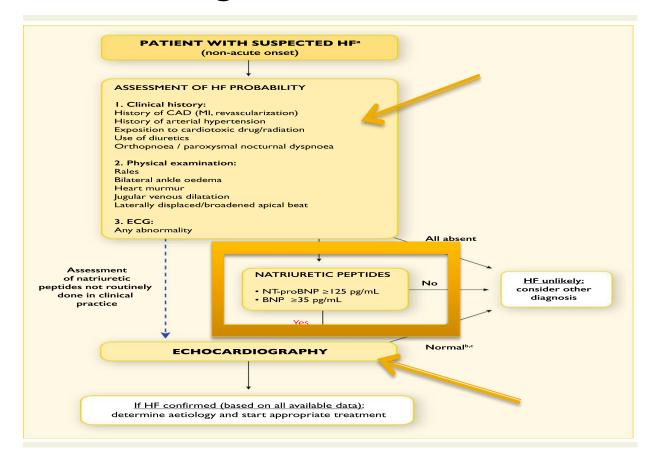
 PPV
 32.2% (95% CI 260%-32724)
 32.0% (95% CI 4833-95-8574)
 62.2% (95% CI 95-87-4324)

 Accuracy
 84.6% (95% CI 8133-96394)
 80.2% (95% CI 2135-96-2044)
 73.7% (95% CI 71-444-84.0%)

The sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios are presented as % (95% confidence interval) for the age-dependent rule-in cutoffs of 450, 900, and 1,800 pg/ml for ages <50, 50-75, >75 years, and for the rule-out cutoff of 300 pg/ml, in all enrolled subjects.

HF = heart failure; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; NPV = negative predictive value; NT-proBNP = N-terminal pro-B-type natriuretic peptide; PPV = positive predictive value.

What did we learn??


- Patients with acute HF have a much higher BNP/NT pro BNP levels than those whose dyspnea is not related to HF
- In those with HF, there is a linear correlation between higher BNP levels and severity of HF and disease process
- BNP > 100pg/mL was the most accurate predictor of diagnosis of AHF than clinical exam, CXR, or other labs.
- In the case of NT pro BNP the use of age stratification for delineation of cut offs had even a better correlation with diagnosis
- Biomarkers, however, do NOT replace the clinical assessment and should be used as an adjunctive tool.

Moving from the acute to the non acute setting..

- These biomarkers were examined to RULE OUT diagnosis of HF in the non acute setting..
- NPPV
- Not very ill
- Thresholds were lower

How to use it in the ambulatory setting...

Further testing warranted or not..

How did all this data get incorporated in the guidelines??

6.3.2 Biomarkers for Diagnosis: Recommendation Biomarkers: Recommendation for Diagnosis COR LOE Recommendation I A See Online Data Supplements A and B. In patients presenting with dyspnea, measurement of natriuretic peptide biomarkers is useful to support a diagnosis or exclusion of HE. 15-24,28-30 MODIFIED: 2013 acute and chronic recommendations have been combined into a diagnosis section.

Pre-discharge BNP..

Linked patients ≥65 years from hospitals in OPTIMIZE-HF to Medicare claims.

Higher pre-discharge BNP correlate to worse outcomes

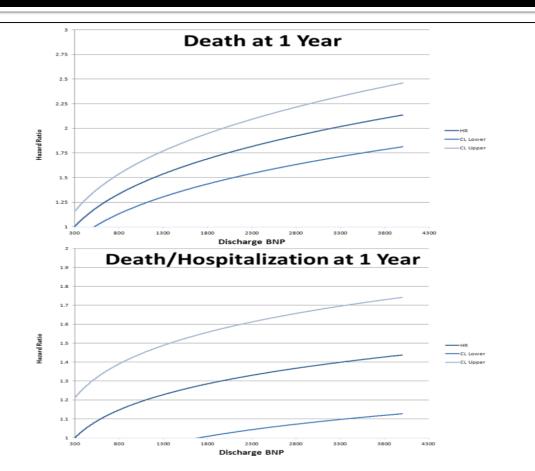
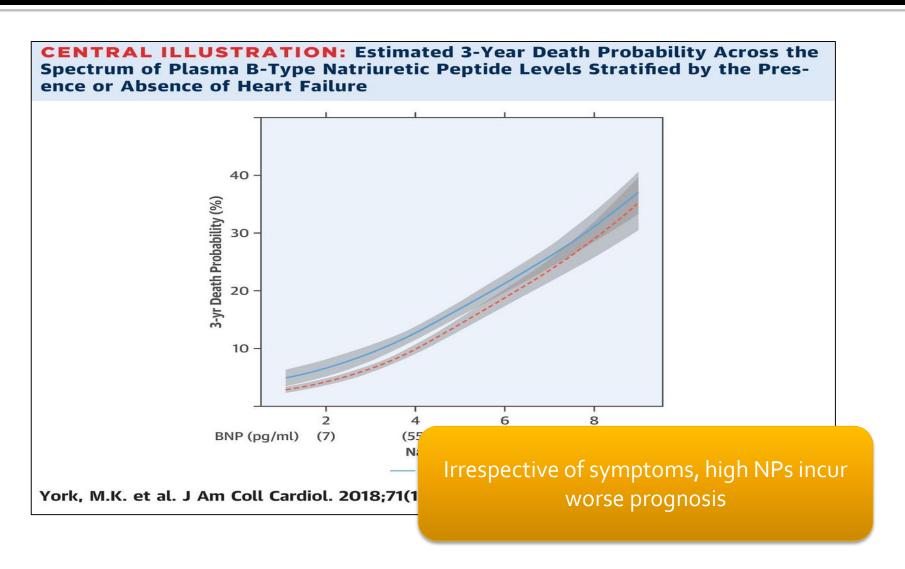
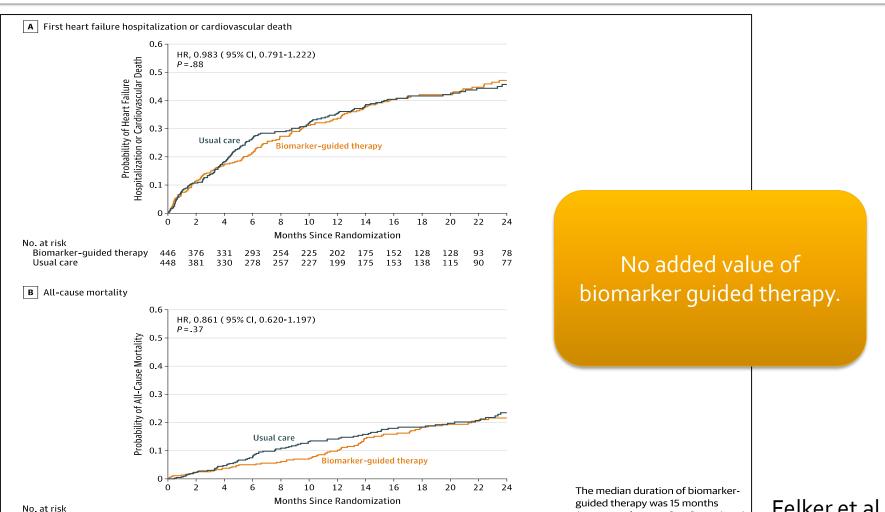



Figure 1.
Adjusted hazard ratio and 95% confidence interval for (A) 1-year mortality and (B) 1-year mortality or rehospitalization by discharge BNP (versus discharge BNP=300).


Moving along.. NP's role in prognostication..

GUIDE-IT

Biomarker-guided therapy

Usual care

Felker et al, JAMA, 2017

(interquartile range [IQR], 7-24) and

15 months (IQR, 7-7) for usual care.

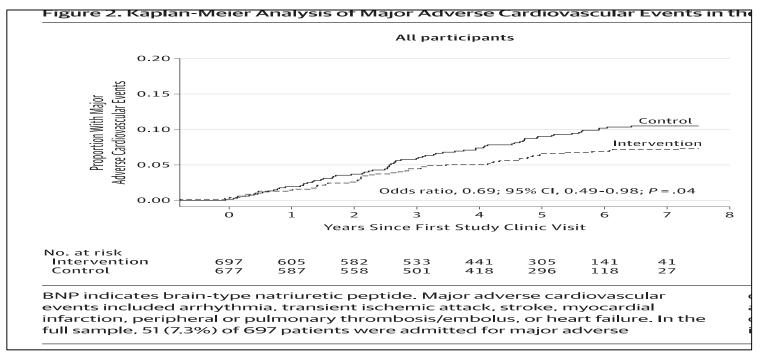
HR indicates hazard ratio.

How did these findings translate into the guidelines..

6.3.3 Biomarkers for Prognosis or Added Risk Stratification: Recommendations

Biomark	Biomarkers: Recommendations for Prognosis							
COR	COR LOE Recommendations Comment/Rationale							
ı	Α	Measurement of BNP or NT-proBNP is useful for establishing prognosis or disease severity in chronic HF. ^{16,87–92}	2013 recommendation remains current.					

Biomarkers: Recommendations for Prognosis (Continued)							
COR LOE Recommendations Comment/Rationale							
I A See Online Data		Measurement of baseline levels of natriuretic peptide biomarkers and/ or cardiac troponin on admission to the hospital is useful to establish a prognosis in acutely decompensated HF. ^{27,93–100}	MODIFIED: Current recommendation emphasizes that it is admission levels of natriuretic peptide biomarkers that are useful.				
Supplemen	ts A and B.						


lla	B-NR	During a HF hospitalization, a predischarge natriuretic peptide level can	NEW: Current recommendation reflects new
See Online	Data	be useful to establish a postdischarge prognosis.93,96,104-113	observational studies.
Supplemen	ts A and B		

A word on prevention...

Original Investigation

Natriuretic Peptide-Based Screening and Collaborative Care for Heart Failure

The STOP-HF Randomized Trial

Recommendations...

6.3.1 Biomarkers for Prevention: Recommendation

Biomarkers: Recommendation for Prevention of HF						
COR	LOE	Recommendation	Comment/Rationale			
See Online Supplement		For patients at risk of developing HF, natriuretic peptide biomarker–based screening followed by team-based care, including a cardiovascular specialist optimizing GDMT, can be useful to prevent the development of left ventricular dysfunction (systolic or diastolic) or new-onset HF.85,86	NEW: New data suggest that natriuretic peptide biomarker screening and early intervention may prevent HF.			

Clinical caveats...

 Other conditions can cause relative elevations or suppression of those biomarkers

List of factors that may affect NP levels..

Table 2. Factors Influencing the Clinical Interpretation of BNP or NT-proBNP Concentrations

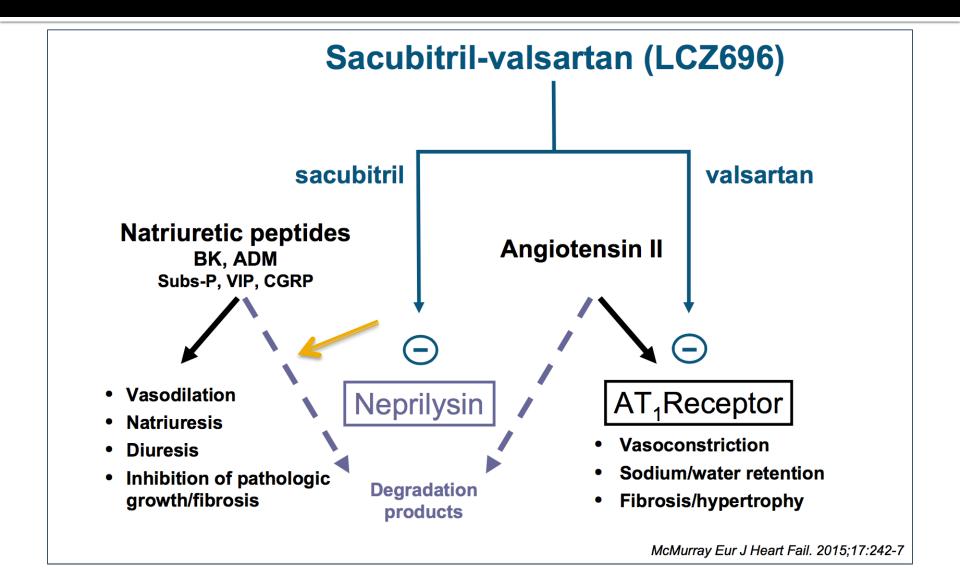
Factors that decrease BNP or NT-proBNP concentrations Obesity Flash pulmonary edema Cardiac tamponade Pericardial constriction Factors that increase BNP or NT-proBNP concentrations Left ventricular dysfunction Hypertrophic heart muscle diseases Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis Hyperthyroidism	
Flash pulmonary edema Cardiac tamponade Pericardial constriction Factors that increase BNP or NT-proBNP concentrations Left ventricular dysfunction Hypertrophic heart muscle diseases Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Factors that decrease BNP or NT-proBNP concentrations
Cardiac tamponade Pericardial constriction Factors that increase BNP or NT-proBNP concentrations Left ventricular dysfunction Hypertrophic heart muscle diseases Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Obesity
Pericardial constriction Factors that increase BNP or NT-proBNP concentrations Left ventricular dysfunction Hypertrophic heart muscle diseases Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Flash pulmonary edema
Factors that increase BNP or NT-proBNP concentrations Left ventricular dysfunction Hypertrophic heart muscle diseases Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Cardiac tamponade
Left ventricular dysfunction Hypertrophic heart muscle diseases Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Pericardial constriction
Hypertrophic heart muscle diseases Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Factors that increase BNP or NT-proBNP concentrations
Infiltrative myocardiopathies Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Left ventricular dysfunction
Acute cardiomyopathies Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Hypertrophic heart muscle diseases
Inflammatory Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Infiltrative myocardiopathies
Valvular heart disease Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Acute cardiomyopathies
Arrhythmias Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Inflammatory
Acute coronary syndromes Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Valvular heart disease
Cardiotoxic drugs Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Arrhythmias
Anthracyclines and related compounds Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Acute coronary syndromes
Significant pulmonary disease Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Cardiotoxic drugs
Acute respiratory distress syndrome, lung disease with right-sided heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Anthracyclines and related compounds
heart failure, obstructive sleep apnea, pulmonary hypertension Pulmonary embolism Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Significant pulmonary disease
Advanced age Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	
Renal dysfunction Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Pulmonary embolism
Anemia Critical illness Burns Stroke High output states Sepsis Cirrhosis	Advanced age
Critical illness Burns Stroke High output states Sepsis Cirrhosis	Renal dysfunction
Burns Stroke High output states Sepsis Cirrhosis	Anemia
Stroke High output states Sepsis Cirrhosis	Critical illness
High output states Sepsis Cirrhosis	Burns
Sepsis Cirrhosis	Stroke
Cirrhosis	High output states
	Sepsis
Hyperthyroidism	Cirrhosis
	Hyperthyroidism

BNP indicates B-type natriuretic peptide; and NT-proBNP, N-terminal pro-B-type natriuretic peptide.

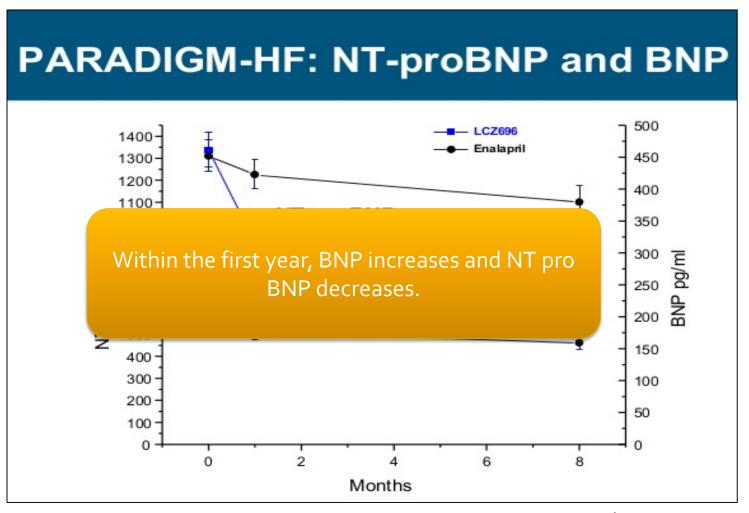
Ibrahim et al, Circ Res, 2018

However, they can still help in these situations..

- CKD...
- Patients with chronic kidney disease typically have higher BNP and NT-proBNP concentrations.
- Increased wall stretch secondary to hypertension and chronic volume overload.
- The age-stratified NT-proBNP cutoffs may be used with good accuracy and without adjustment.
- Of note, both BNP and NT-proBNP are considerably prognostic in patients with chronic kidney disease, even in the absence of obvious cardiovascular disease.


Another caveat.. Obesity..

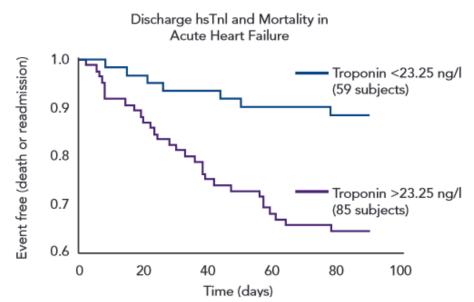
- BNP and NT-proBNP levels are generally lower
- Possibly due to suppression of synthesis or release of natriuretic peptides in obese subjects.
- However, regardless of body mass index, BNP or NTproBNP concentrations are typically higher in patients with HF compared with patients without
- NT-proBNP value <300 pg/mL maintained excellent diagnostic performance in ruling out acute HF across all weight categories.
- ? Lowering decision limits for BNP by 50% in those with higher body mass index to prevent missed HF diagnoses


HFpEF vs. HFrEF.. Does it make a difference..

- HFpEF usually have lower NP levels than HFrEF patients.
- ? smaller LV size and lower wall stress in HFpEF.
- Although the sensitivity is reduced in HFpEF, The same cutoff values for BNP and NTproBNP are recommended for the diagnosis of HF in both categories.

What about ARNIs?

Biomarkers with ARNI...



McMurray et al, NEJM, 2016

A word on Troponin...

Marker of myocyte injury

Figure 3: 90-day Event-free (Death or Readmission) Curves for Patients Based on Discharge hsTnl

hsTnl = high-sense troponin I. Source: reproduced with permission from Xue et al, 2011.

Recommendations...

-			
llb	B-NR	In patients with chronic HF, measurement of other clinically available	MODIFIED: 2013 recommendations have been
See Online Supplemen		tests, such as biomarkers of myocardial injury or fibrosis, may be considered for additive risk stratification. ^{27,95,98,99,103,114-119}	combined into prognosis section, resulting in LOE change from A to B-NR.

Summarize indications of Biomarker use..

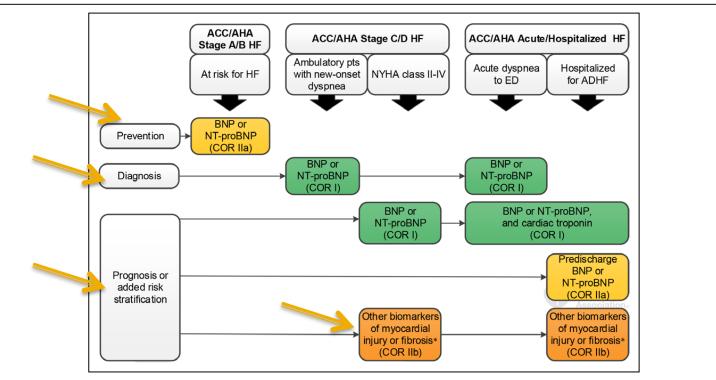
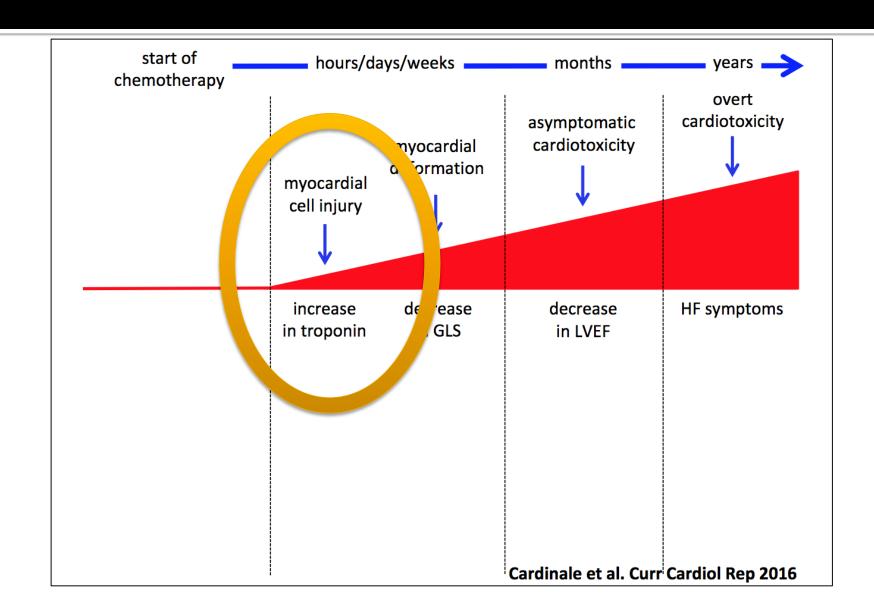
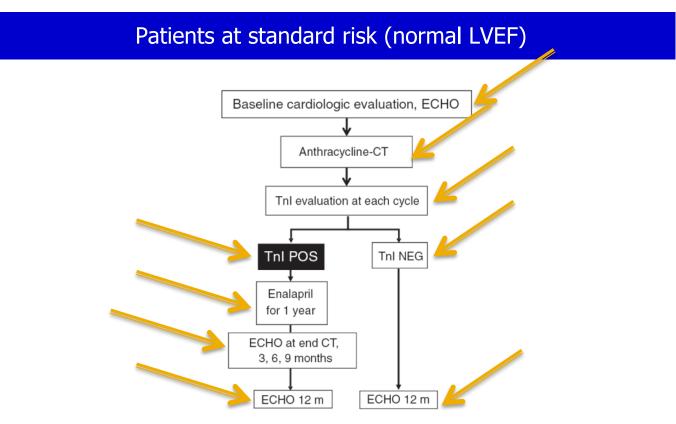


Figure 1. Biomarkers Indications for Use.

Colors correspond to COR in Table 1. *Other biomarkers of injury or fibrosis include soluble ST2 receptor, galectin-3, and high-sensitivity troponin. ACC indicates American College of Cardiology; AHA, American Heart Association; ADHF, acute decompensated heart failure; BNP, B-type natriuretic peptide; COR, Class of Recommendation; ED, emergency department; HF, heart failure; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; and pts, patients.


What does the future hold??

- Metabolomic profiling aims to comprehensively measure byproducts of metabolism with a goal to identify metabolic signature profiles in particular cohorts.
- Transcriptomics is the study of complete sets of RNA transcripts produced by the genome, allows the identification of genes that are differentially expressed in distinct cell populations or in response to different treatments.
- Genetic testing may play a role in the diagnosis and prognostication of patients presenting with HF, providing information on genetic cause of disease, as well as to monitor clinical status.


Questions??

Thanks..

A quick word on cancer therapies...

What other algorithms are available out there?

Fig. 1. Algorithm for the management of cardiotoxicity in patients receiving anthracyclines, CT = chemotherapy; ECHO = echocardiogram; Tnl = Troponin I.

High risk patients.. Different algorithm?

Patients are admitted to hospital to receive CT

Troponin + BNP approach

cycle n.	day	phase	Tnl	BNP	EKG + visit	ЕСНО
1°	1°	baseline preCT	Х	Х	Х	Х
	2°	soon after CT	Х	X	Х	
	3°	before discharge	Х	X	Х	
2°	1°	baseline preCT	Х	X	Х	
	2°	soon after CT	Х	X	Х	
	3°	before discharge	Х	X	Х	
3°	1°	baseline preCT	Х	X	Х	Х
	2°	soon after CT	Х	X	Х	
	3°	before discharge	Х	X	Х	
4°	1°	baseline preCT	Х	X	Х	
	2°	soon after CT	Х	X	Х	
	3°	before discharge	Х	X	Х	1
After end CT		FU	Х	Х	Х	Х
	_					_