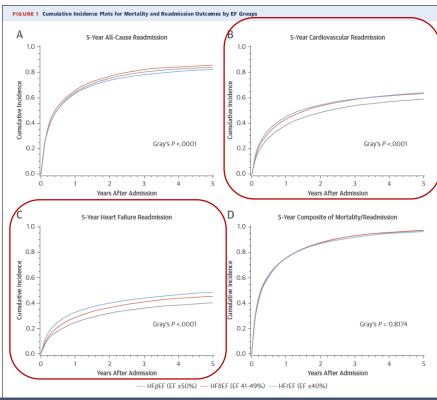
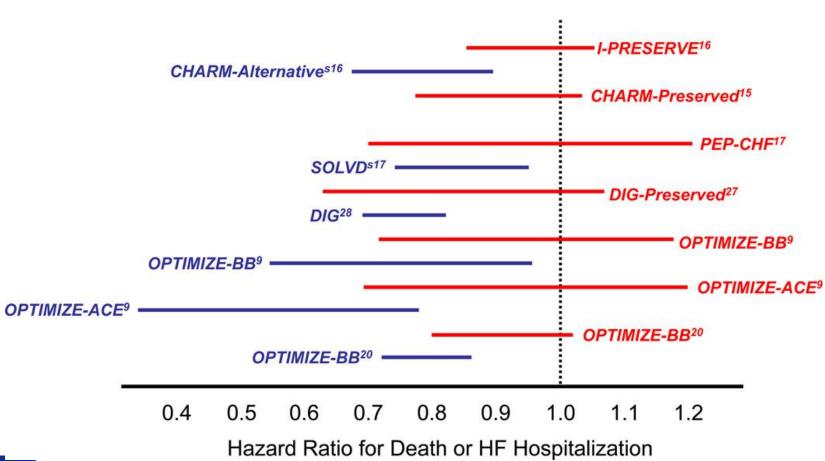

GWTG-HF data linked to Medicare data, ~ 40 k pts,


Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction

5-Year Outcomes

Kevin S. Shah, MD, ^a Haolin Xu, MS, ^{b.c} Roland A. Matsouaka, PhD, ^{b.c} Deepak L. Bhatt, MD, MPH, ^d Paul A. Heidenreich, MD, MS, ^e Adrian F. Hernandez, MD, MHS, ^{b.c} Adam D. Devore, MD, ^{b.c} Clyde W. Yancy, MD, MSc, ^f



Hospitalization

All 3 groups had **similar 5-year mortality rates** (HFrEF 75.3% vs. HFpEF 75.7%; HFbEF 75.7%) **CVH and HFH higher in HFrEF and HFbEF** compared with those with HFpEF

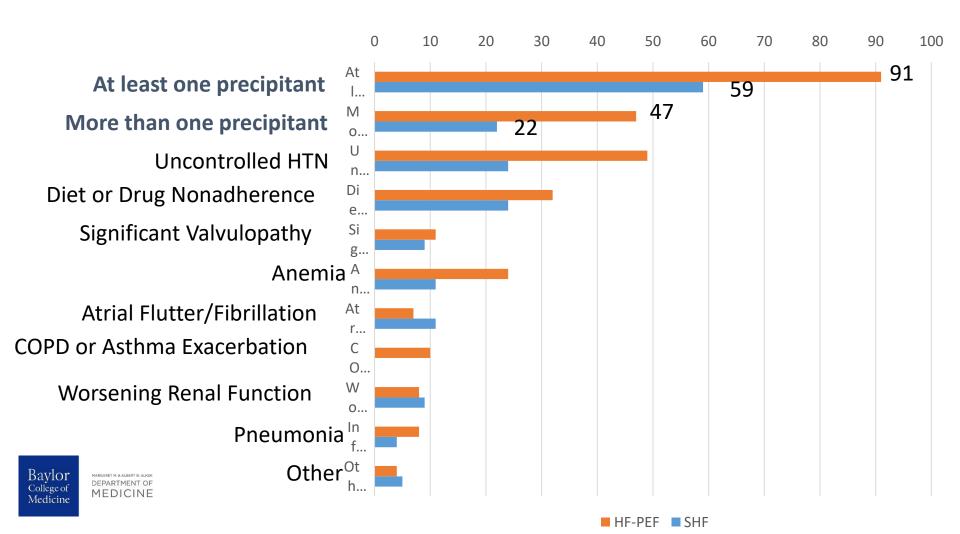
Randomized Trials in HFpEF

- HFrEF

Circulation. 2011 May 10; 123(18): 2006–2014.

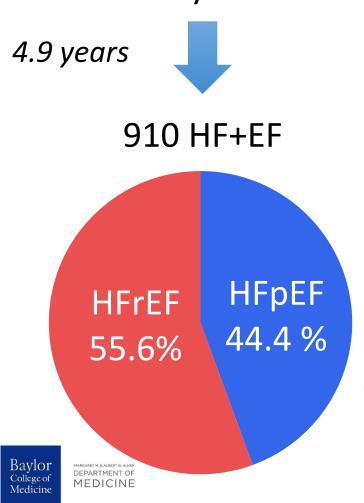
— HFpEF

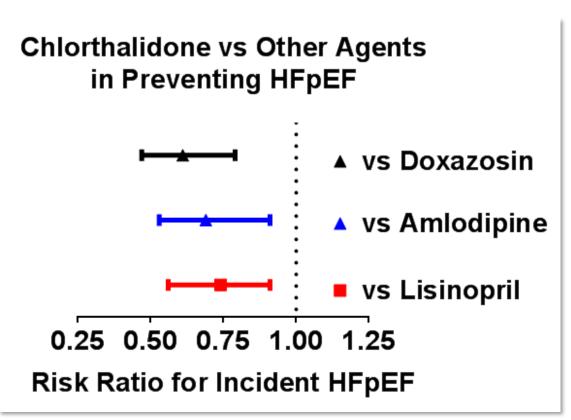
Risk Factors for HF-PEF


- Older age
- Women
- Systolic hypertension
- Diabetes
- Increased pulse pressure
- Left ventricular hypertrophy
- Diastolic filling abnormalities
- Obesity

Treatable

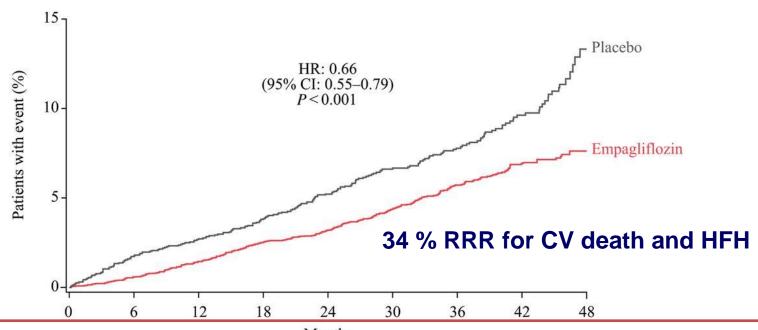
Precipitants of Heart Failure Exacerbations in Patients with HF-PEF




J Am Coll Cardiol. 2012 Mar 13;59(11):998-1005.

Stage A – Prevention of HFpEF

ALLHAT
42,418 High Risk HTN
> 55 yrs old



Lower Systolic BP with Chlorthalidone

HF Events Reduced with SGLT2i in high risk CVD -EMPA-REG OUTCOME TRIAL

~ 10% had pre- existing HF, 43% on loop diuretics at baseline

Time to first HFH or CVD

- Weight reduced by ~2 kg in both emparadose groups
- No measure of LVEF, no data on HFrEF vs HFpEF, or BNP
- Reduction in HFH could be due to HFpEF

Ongoing SGLT2i Trials in HF – some HFpEF

	EMPEROR-Preserved ¹	EMPEROR-Reduced ²	Dapa-HF ³	SOLOIST-WHF ^{4,5}
Sample size	4126	2850*	4500	40004 (6667?)5
Key inclusion criteria	• Chroni • Elevated N' • eGFR ≥20 ml/	-proBNP	 Symptomatic HFrEF[†] Elevated NT-proBNP eGFR ≥30 ml/min/1.73 m² 	 Type 2 diabetes Chronic HF Elevated NT-proBNP Hospital admission for worsening HF and
	HFpEF (LVEF >40%)	HFrEF (LVEF ≤40%)	HFrEF (LVEF ≤40%)	haemodynamically stable
Primary endpoint	 Time to first event of a or adjudica 		 Time to first occurrence of CV death, HHF or urgent HF visit 	 Time to first event of CV death or HHF (both EF<50% and II)
Key secondary endpoints	 Individual components All-cause r All-cause hos Time to first occurr reduction Change from ba 	nortality pitalisation ence of sustained of eGFR	 Total number of CV death or HHF All-cause mortality Composite of ≥50% sustained eGFR decline, ESRD or renal death Change from baseline in KCCQ 	 Total number of CV death, HHF or urgent HF visit Composite of ≥50% sustained eGFR decline, chronic dialysis, renal transplant or sustained eGFR <15 ml/min/1.73 m²
Start date	March 2017	March 2017	February 2017	June 2018
Expected	June 2020	June 2020	December 2019	January 2021

^{*}NT-proBNP-based enrichment of the population with patients at higher severity of HF; †NYHA class II–IV ESRD, end-stage renal disease; HHF, hospitalisation for heart failure; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro–B-type natriuretic peptide

^{1.} ClinicalTrials.gov NCTo3057951; 2. ClinicalTrials.gov NCTo3057977; 3. ClinicalTrials.gov NCTo3036124; sotagliflozin

^{4.} ClinicalTrials.gov NCT03521934; 5. EU Clinical Trials Register 2017-003510-16. Available at: https://www.clinicaltrialsregister.eu

Stage C – Treatment of HFpEF

Pharmacological Treatment for Stage C HFpEF (remains same)

COR	COR LOE Recommendations		Comment/ Rationale
-	В	Systolic and diastolic blood pressure should be controlled in patients with HFpEF in accordance with published clinical practice guidelines to prevent morbidity	2013 recommendation remains current.
1	C	Diuretics should be used for relief of symptoms due to volume overload in patients with HFpEF.	2013 recommendation remains current.

Pharmacological Treatment for Stage C HFpEF (remains same)

COR	LOE	Recommendations	Comment/ Rationale
lla	С	Coronary revascularization is reasonable in patients with CAD in whom symptoms (angina) or demonstrable myocardial ischemia is judged to be having an adverse effect on symptomatic HFpEF despite GDMT.	2013 recommendation remains current.
lla	С	Management of AF according to published clinical practice guidelines in patients with HFpEF is reasonable to improve symptomatic HF.	2013 recommendation remains current.

2000 2000 2000 2000 2000 2000 2000 200		The use of beta-blocking agents, ACE	2013
lla	C	hypertension is reasonable to control	recommendation remains current.
		blood pressure in patients with HF <i>p</i> EF.	

CHARM-PRESERVED: Primary and secondary outcomes

	Candesartan	Placebo	· 0.89 _I	<i>P</i> -value	Covariate adjusted <i>P</i> -value
CV death, HF hosp	333	366		0.118	0.051
CV death 170	170		0.99	0.918	0.635
HF hospitalization	241	276 —	0.85	0.072	0.047
CV death, HF hosp, N	11, 365	399	0.90	0.126	0.051
CV death, HF hosp, M stroke	11, 388	429	0.88	0.078	0.037
CV death, HF hosp, N stroke, revascularizat	,	497	0.91	0.123	0.13
Baylor Magazeet 16 Aleket 16 Aleket 17 Aleket 10 E	(Candesarta better).8 1.0 an HR	1.2 Placebo better	

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

72

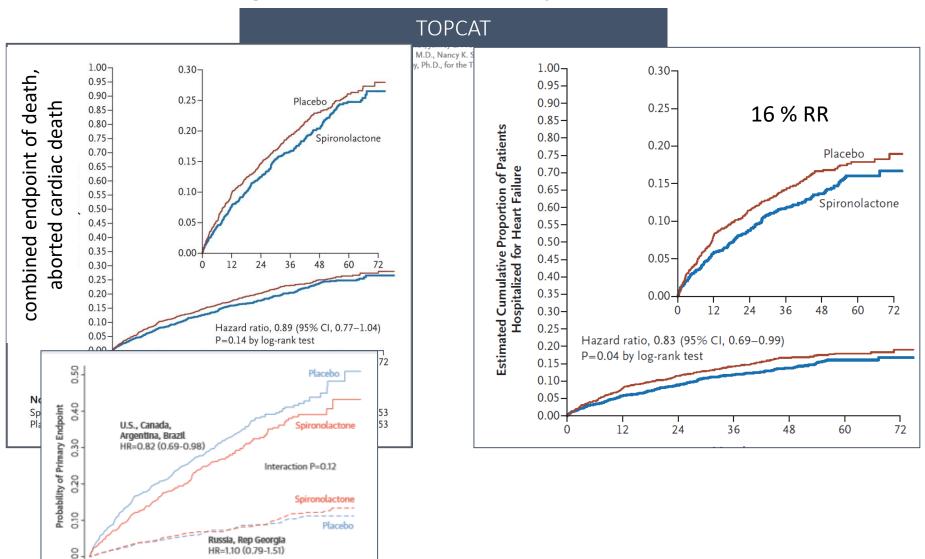
60

12

24

36

Months


48

APRIL 10, 2014

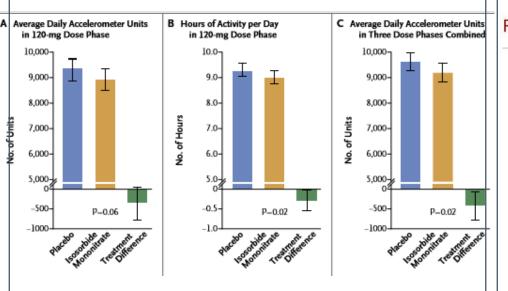
VOL. 370 NO. 1

JACC; Volume 66, Issue 24, December 2015

Spironolactone for Heart Failure with Preserved Ejection Fraction

Pharmacological Treatment for Stage C HFpEF

COR	COR LOE Recommendations		Comment/ Rationale
IIb	B-R	In appropriately selected patients with HFpEF (with EF ≥45%, elevated BNP levels or HF admission within 1 year, estimated glomerular filtration rate >30 mL/min, creatinine <2.5 mg/dL, potassium <5.0 mEq/L), aldosterone receptor antagonists might be considered to decrease hospitalizations.	NEW: Current recommendation reflects new RCT data.
Ilb	В	The use of ARBs might be considered to decrease hospitalizations for patients with HFpEF.	2013 recommendation remains current.


EF = ejection fraction

ORIGINAL ARTICLE

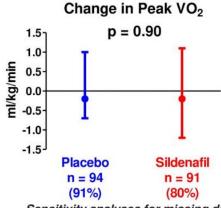
Isosorbide Mononitrate in Heart Failure with Preserved Ejection Fraction

Margaret M. Redfield, M.D., Kevin J. Anstrom, Ph.D., James A. Levine, M.D.,

NEAT-HF

- 110 patients with HFEF ≥50% randomized to either isosorbide mononitrate or placebo
- no beneficial effects on activity levels, QoL, exercise tolerance, or NT-proBNP levels.

ONLINE FIRST


Effect of Phosphodiesterase-5 Inhibition on Exercise Capacity and Clinical Status in Heart Failure With Preserved Ejection Fraction

A Randomized Clinical Trial

RELAX-HF

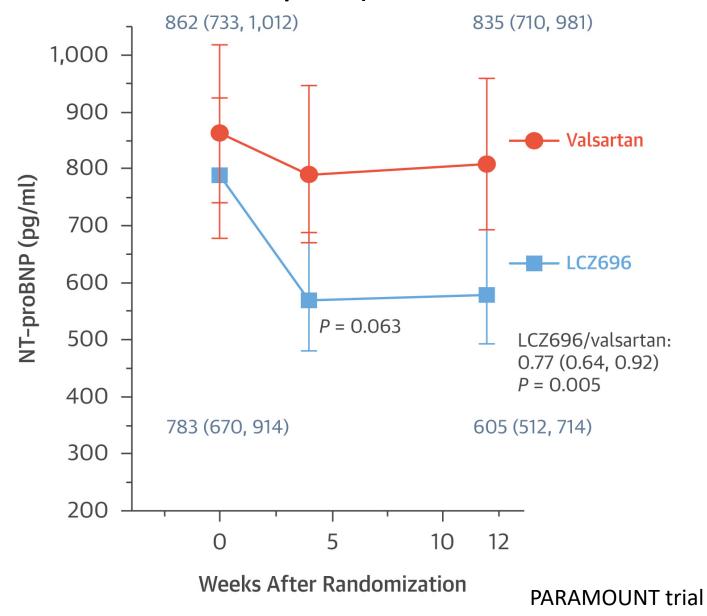
Results: Primary Endpoint

Sensitivity analyses for missing data Multiple imputation: p = 0.98; LOCF: p = 0.98

Data are median and IQR

- PDE-5 inh augments the NO by upregulating cGMP
- Randomized 216 patients with HFEF ≥50% on and pVo2 <60% to sildenafil or placebo.</p>
- No improvement in O2 consumption or exercise tolerance

Pharmacological Treatment for Stage C HFpEF


COR LOE Recommendations		Comment/ Rationale	
III: No Benefit	B-R	Routine use of nitrates or phosphodiesterase-5 inhibitors to increase activity or QoL in patients with HFpEF is ineffective.	NEW: Current recommendation reflects new data from RCTs.
III: No Benefit	С	Routine use of nutritional supplements is not recommended for patients with HF <i>p</i> EF.	recommendation remains current.

HFpEF

Evolving New Approaches

Effects of LCZ696 in HFpEF (Paramount Pilot Trial)

New Studies with ARNI

NAN	1E	TITLE	Primary End Point
PAR HF	RAGON-	Efficacy and Safety of LCZ696 Compared to Valsartan, on Morbidity and Mortality in HFpEF	CV death and HF hospitalizations
TITI	RATION	Safety and Tolerability of Initiating LCZ696 in Heart Failure Patients 200 mg twice daily (bid) over 3 weeks vs 6 weeks)	Hypotension, Renal Dysfunction, Hyperkalemia and Angioedema
PAR	RABLE	ARNI in Asymptomatic Patients With Elevated Natriuretic Peptide and Elevated Left Atrial Volume	impact on LV diastolic function
PIO	NEER	comParlson Of Sacubitril/valsartaN Versus Enalapril on Effect on ntpRo-bnp in Patients Stabilized From an Acute Heart Failure Episode	Change from baseline in NT-proBNP (hypotension, hyperkalemia, angioedema)
PAR	RASAIL	Description of Tolerability of LCZ696 (Sacubitril / Valsartan) in Heart Failure With Reduced Ejection Fraction (HFrEF) Treated in Real Life Setting (PARASAIL) in CANADA	% Pts tolerated LCZ696 at the dose of 97.2 mg sacubitril / 102.8 mg valsartan bid at month 6

Source: ClinicalTrials.gov

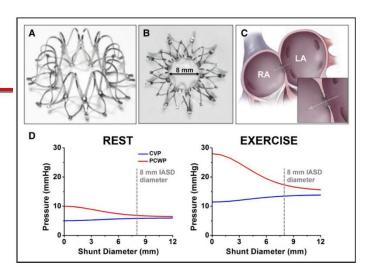
FASTTRACK CLINICAL RESEARCH

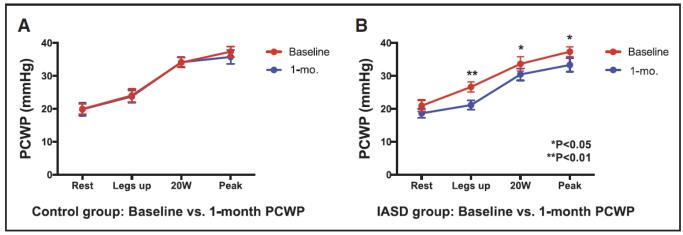
Heart failure/cardiomyopathy

Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study

↑ cGMP by soluble guanylate cyclase stimulator

Primary analysis ^a			Baseline	12 weeks (Visit 5)	Treatment comparison			
		n	Mean (SD)	Mean change	Difference	90% Confidence	<i>P</i> -value ^c	
				from baseline (SD)	(Treat-Plac) [Back- transformed ^b]	interval [Back- transformed ^b]	One- sided	Two- sided
_AV (mL)	Placebo	67	89.075 (51.059)	-3.361 (12.654)				
	Pooled	194	87.083 (30.204)	-1.732 (12.808)	1.6291	-1.36 to 4.62	0.8156	0.3688
	2.5/5/10 n	ng						
og(NT-proBNP)	Placebo	73	6.897 (1.203)	-0.098 (0.778)				
[log(pg/mL)]	Pooled	195	6.945 (1.297)	0.038 (0.782)	0.1372 [1.147]	-0.04 to 0.31 [0.96–1.37]	0.8991	0.2017


- Phase II Study, Vericiguat once daily at different doses was well tolerated
- did not change NT-proBNP and LAV at 12 weeks
- but was associated with improvements in QOL in HFpEF



Circulation

Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure With Preserved Ejection Fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure])

A Phase 2, Randomized, Sham-Controlled Trial

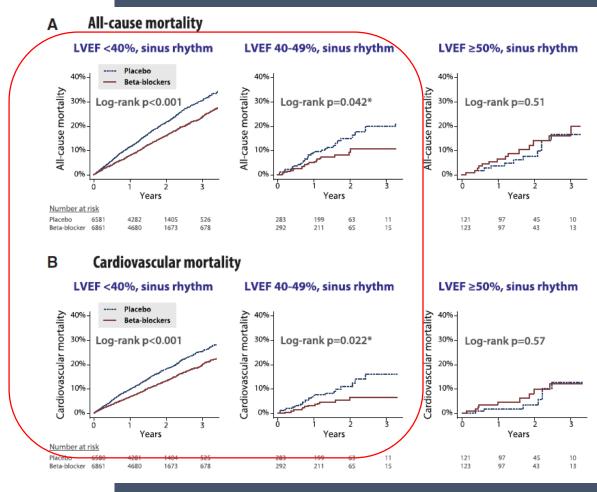
- patients with NYHA-III-IV EF>40%HF, exercise PCWP>25
- creation of an 8-mm interatrial communication to unload LA
- implantation of an interatrial shunt device reduced PCWP during exercise,

Heart Failure

Mid-Range LVEF

FASTTRACK CLINICAL RESEARCH

Heart failure/cardiomyopathy


Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials

John G.F. Cleland¹, Karina V. Bunting², Marcus D. Flather³, Douglas G. Altman⁴, Jane Holmes⁴, Andrew J.S. Coats⁵, Luis Manzano⁶, John J.V. McMurray⁷, Frank Ruschitzka⁸, Dirk J. van Veldhuisen⁹, Thomas G. von Lueder^{10,11}, Michael Böhm¹², Bert Andersson¹³, John Kjekshus¹⁴, Milton Packer¹⁵, Alan S. Rigby¹⁶, Giuseppe Rosano^{17,18}, Hans Wedel¹⁹, Åke Hjalmarson¹³, John Wikstrand²⁰, and Dipak Kotecha^{2,11*}; on behalf of the Beta-blockers in Heart Failure Collaborative Group

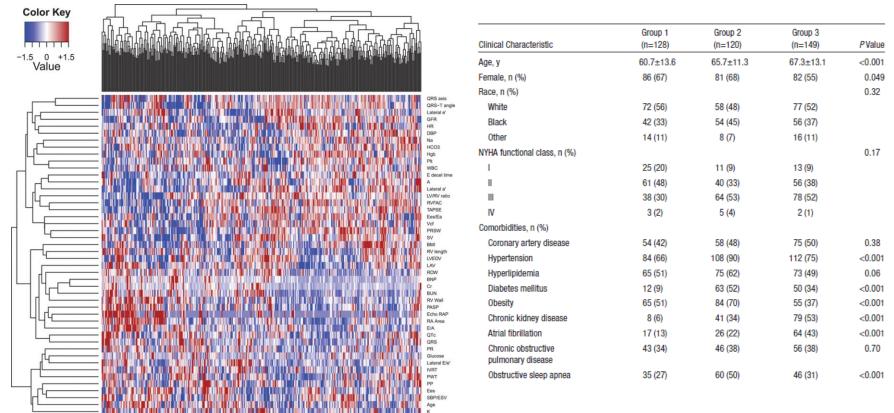
- The Beta-blockers in Heart Failure Collaborative Group (BBmeta-HF) pool individual patient data from 11 major HF RCTs::Australia/New Zealand Heart Failure Study (ANZ), BEST, CAPRICORN, CHRISTMAS, CIBIC I, CIBIS II, COPERNICUS, MDC, MERIT-HF, SENIORS, U.S.Carvedilol HF Program (US-HF)
- to determine efficacy of beta blockers in mid range and preserved EF and also atrial fibrillation patients
- Though guidelines suggest to treat mid-range EF as HF-PEF, in practice most of these patients are treated as HFrEF
- 14262 patients in sinus rhythm, 3050 patients in atrial fibrillation
- Pts with baseline LVEF and ECG that showing either sinus rhythm or AF/atrial flutter included

Treat HFmEF like HFrEF

Recommendations for treatment of patients w failure with preserved ejection fraction and hea with mid-range ejection fraction

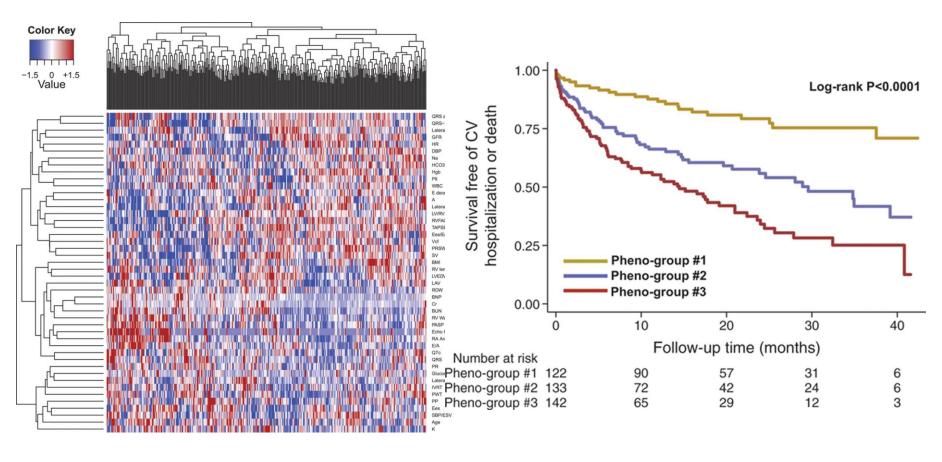
Recommendations	Class ^a	Level ^b
it is recommended to screen patients with HFpEF or HFmrEF for both cardiovascular and non-cardiovascular comorbidities, which, if present, should be treated provided safe and effective interventions exist to improve symptoms, well-being and/or prognosis.	-	C
Diuretics are recommended in congested patients with HFpEF or HFmrEF in order to alleviate symptoms and signs.	1	В

β-blockers improve outcomes for all pts with HF any reduced EF and in SR. Most robust for LVEF<40%, but similar benefit in LVEF 40–49 %



HFpEF

Targeted Therapies for Phenomapping / Subgrouping

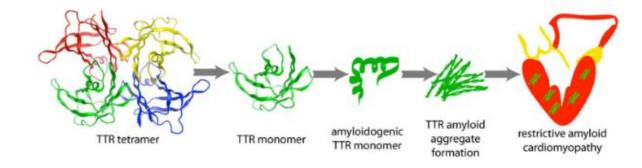

Phenomapping Novel Classification of HFpEF

Phenogroup 1 younger, lower BNPPhenogroup 2 obesity, DM and OSAPhenogroup 3 oldest, with CKD , highest BNP and MAGGIC score

Phenomapping for Novel Classification of HFpEF

HFpEF Clinical Presentation Phenotypes +Pulmonary Lung +Chronotropic +Skeletal **Hypertension** +Atrial Fibrillation Congestion Incompetence muscle weakness (CpcPH) Overweight/obesity/ Diuretics +Rate adaptive +Pulmonary +Exercise training +Cardioversion metabolic syndrome/ (loop diuretic in DM) atrial pacing vasodilators + Rate Control program type 2 DM Caloric restriction (e.a. PDE5I) +Anticoagulation Statins Inorganic nitrite/nitrate Sacubitril Spironolactone + Arterial +ACEI/ARB +ACEI/ARB +ACEI/ARB +ACEI/ARB +ACEI/ARB hypertension +Rate adaptive +Pulmonary +Exercise training +Cardioversion + Rate Control atrial pacing vasodilators program (e.g. PDE51) +Anticoagulation +Ultrafiltration +Ultrafiltration +Ultrafiltration +Ultrafiltration +Renal dysfunction +Ultrafiltration if needed if needed if needed if needed if needed +Rate adaptive +Pulmonary +Exercise training +Cardioversion + Rate Control atrial pacing vasodilators program (e.g. PDE51) +Anticoagulation +CAD +ACEI +ACEI +ACEI +ACEI +ACEI +Revascularization +Revascularization +Revascularization +Revascularization +Revascularization +Rate adaptive +Pulmonary +Exercise training +Cardioversion vasodilators + Rate Control atrial pacing program (e.g. PDE51) +Anticoagulation

HFpEF


Targeted Therapies for Genotyping

Amyloidosis-TTR

- TTR is a carrier for thyroxine and retinol binding protein, made in liver
- originally called prealbumin
- dissociated transthyretin (TTR) monomers misfold and assemble into amyloid fibrils
- mutation in the TTR gene or aging facilitates dissociation of tetramer into monomers
- 2 distinct types of ATTR:
 - hereditary or mutated (mt-ATTR) : Autosomal Dominant
 - familial amyloid poly-neuropathy (FAP),
 - familial amyloid cardiomyopathy (FAC)
 - wild-type(wt-ATTR; senile systemic amyloidosis (SSA)

TTR Amyloid Cardiomyopathy

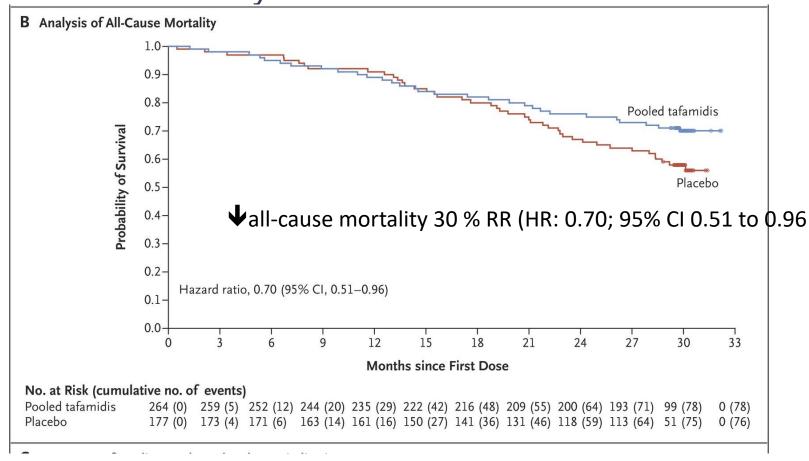
ATTR-ACT Study: Tafamidis: binds to transthyretin, preventing tetramer dissociation

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 13, 2018

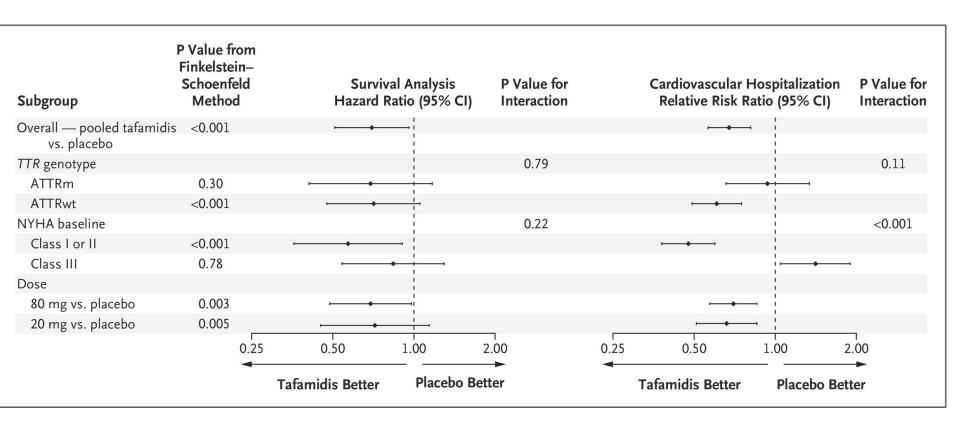
VOL. 379 NO. 11


Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy

Mathew S. Maurer, M.D., Jeffrey H. Schwartz, Ph.D., Balarama Gundapaneni, M.S., Perry M. Elliott, M.D., Giampaolo Merlini, M.D., Ph.D., Marcia Waddington-Cruz, M.D., Arnt V. Kristen, M.D., Martha Grogan, M.D.,

- 441 patients with transthyretin amyloid CMP
- 80 mg or 20 mg of tafamidis, or placebo for 30 months.
- hierarchical assessment of all-cause mortality, followed by CVH

ATTR-ACT Study: Tafamidis


ATTR-ACT Study: Tafamidis Secondary End-Points

- lower rate of decline in 6-minute walk test (P<0.001)
- lower rate of decline in QOL by KCCQ-OS score (P<0.001)

In patients with transthyretin amyloid cardiomyopathy, tafamidis was associated with reductions in allcause mortality and CV hospitalizations and reduced the decline in functional capacity and QOL

Tafamidis: Subgroup analysis

PATISIRAN: interfering RNAs (siRNAs) control gene expression by mediating the cleavage mRNAs.

- IV infusion every 3 weeks.
- APOLLO clinical trial, patisiran (n=148) showed significantly improved scores on the Neuropathy Impairment Score+7 and Norfolk Quality of Life Questionnaire—Diabetic Neuropathy (QOL-DN) at 18 months, compared with those taking placebo (n=77) (P < 0.001).
- FDA approved for FAP

INOTERSEN:

Antisense oligonucleotide that causes degradation of mutant and wild-type transthyretin mRNA by binding TTR mRNA → reduced TTR protein levels

- Sq inj once/week
- NEURO-TTR Trial: Stage 1 or 2 hATTR
 with polyneuropathy (n=172)
 randomized to weekly inotersen or
 placebo. Scores on the mNIS+7 and the
 QOL-DN showed improvement (P
 < 0.001).
- FDA approved for FAP Oct 2018

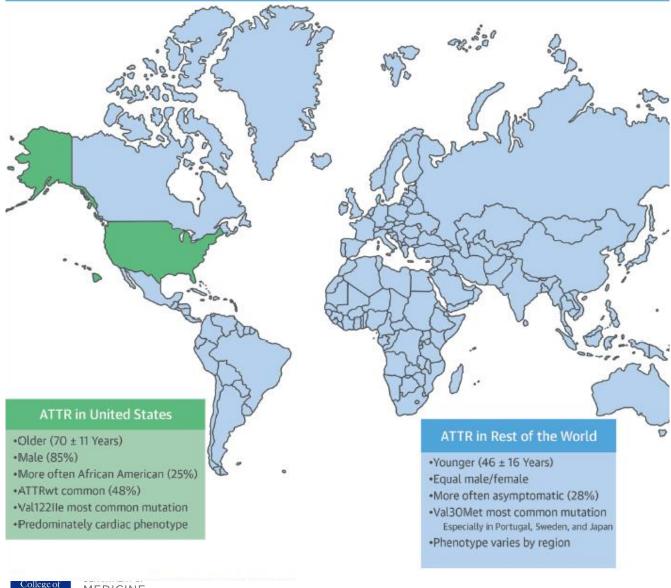
Adams D, et al Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018 Jul 5. 379 (1):11-21. Benson MD, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018 Jul 5;. 379(1):22-31.

Tafamidis binds and stabilizes TTR

- Halt TTR tetramer dissociation, monomer misfolding
- Early intervention: minimal disease progression > 5yrs years in FAP.
- decreased rate of progression(Europea n Medical Agency in 2011 for stage I of neuropathic ATTR)

Diflunisal: NSAID drug approved for treatment of arthritis.

- complexes to the thyroxine binding site, stabilizes circulating TTR tetramers, inh release of monomer
- RCT stage I-II ATTR-FAP, improved QOL s and reduced neurological impairment .(offlabel)


Tolcapone FDA approved for Parkinson disease (Orphan Drug designation –ATTR)

- Occupies the T₄-binding sites, stabilizing the tetramer
- docks better than tafamidis in wt-TTR.

Neurol Ther. 2015. 4:61-79. Amyloid. 05 Aug 2016. Vol. 23, Iss. 3:178-183. Transplantation. 2015. 00:1-9. JAMA. 2013 Dec 25. 310(24):2658-67. Nature Communications. 2016 Feb 23.

Transthyretin Amyloid Outcomes Survey (THAOS)

Among U.S. subjects

- wild-type:
 - older and white
 - more males
- Val122Ile mutations
 - more African descent%
 - worse NYHA, faster HR, and lower QOL

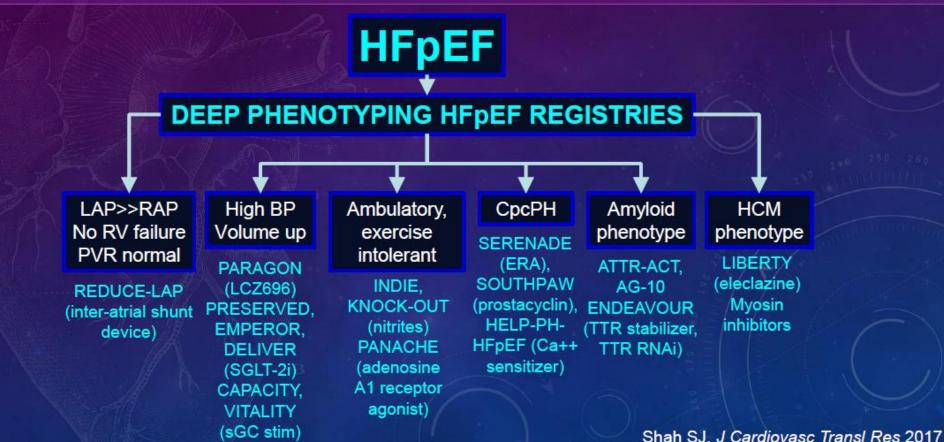
Maurer MS et al. J Am Coll Cardiol 68 (2): 161-72

MEDICINE

Heart Failure

Stage C/D Treatment Strategies Need to be Individualized for

Patient's severity of illness and trajectory Responsiveness to therapy Goals of care Comorbidities and side effect profile Tolerability Phenogroups



Summary

- Confirm diagnosis of HF-PEF
- Consider different etiologies and precipitating factors
- Treatments may differ based on etiology
- Treat volume overload carefully
- Treatment of HTN is key
- In appropriately selected patients with HFpEF (elevated BNP levels or HF admission within 1 year, estimated glomerular filtration rate >30 mL/min, creatinine <2.5 mg/dL, potassium <5.0 mEq/L), aldosterone receptor antagonists might be considered to decrease hospitalizations
- Routine use of nitrates or PDE5 inhibitors in patients with HFpEF is ineffective
- New targeted and individualized treatment strategies are evolving

Ongoing HFpEF clinical trials

