

Effects of Advanced Cardiac Procedure Simulator Training on Learning and Performance in Cardiovascular Medicine Fellows

Young MN, Markley R, Leo T, Coffin S, Davidson MA, Salloum J, Mendes LA, Damp JB

Vanderbilt University Medical Center

Background

- Simulation-based training has been utilized in various medicine and surgical training environments.
- Prior studies have demonstrated the effectiveness of simulation in endovascular, echocardiographic, endoscopic, and laparoscopic procedures.
- We hypothesized that the integration of a procedural simulation curriculum into a cardiology fellowship program may improve trainee knowledge and performance of three specific cardiac procedures.

Design and Methodology

• Two classes of 1st-year fellows (intervention group) underwent the following simulator training protocol:

Viewing of instructional videos detailing each cardiac procedure

Simulator training with proctored teaching and feedback

Case-based skills assessments at each station following proctor teaching

Knowledge assessment via written examination (15 questions)

- One class of 3rd-year fellows did not undergo simulator training (historical controls).
- Using non-parametric testing, we compared written exam results and procedural skills assessments between the intervention group (n=17) and the non-simulator trained controls (n=7).
 - The index class of 1st-year fellows (n=9) was reevaluated at 18 months to assess for skills retention.

Performance Results

Intervention cohort had higher median scores on the written knowledge assessment compared to controls (p=0.038).

Figure 1. Skills Results for Simulator vs. Control Groups

Procedural Skills Assessment Scores 45 40 40 35 30 25 20 15 10 5 0 Transvenous temporary pacing wire Intra-aortic balloon Pericardiocentesis pump wire

■ Control group (n=7)

Figure 2. Skills Retention at 18 Months

■ Intervention group (n=17)

Procedure Skills Stations

Figure 3. Procedural Skills Training and Testing Stations for transvenous pacing wire (A), intra-aortic balloon pump (B), and pericardiocentesis (C).

Each teaching/skills testing station was supervised by a trained one-on-one proctor.

Conclusions

- The design, application, and integration of a simulatorenhanced teaching program into a cardiology fellowship curriculum is feasible.
- The teaching protocol employed proved educationally beneficial to our trainees in regards to the acquisition of knowledge and technical skills.
- Without continued training, performances assessment scores decreased over time. Future studies should focus on mechanisms that may facilitate improved skills retention using simulation-based training.

Disclosures

The authors have no relevant disclosures.