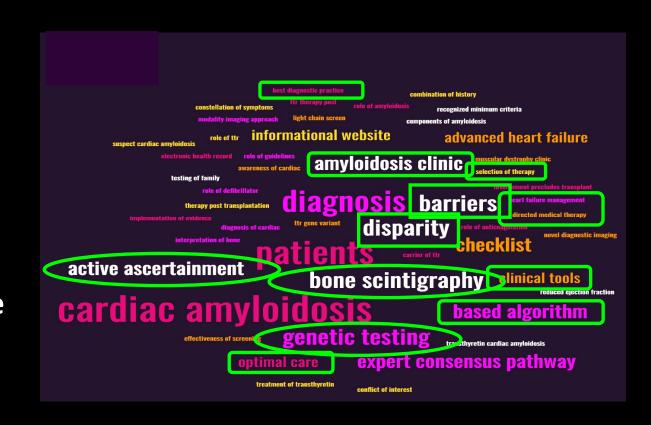
Amyloidosis Roundtable: Unmet Needs in the Management of Cardiac Amyloidosis

Mat Maurer, MD
Columbia University Irving Medical Center
October 25, 2021

Disclosures

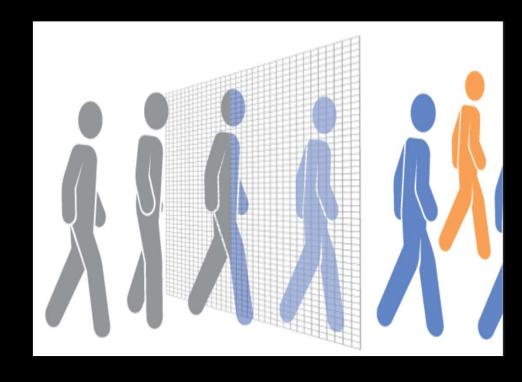
- I have research support for my research from:
 - NIH/NIA/NHLBI
 - Eidos, Inc
 - Ionis Pharmaceuticals
 - Pfizer, Inc.

-Akcea

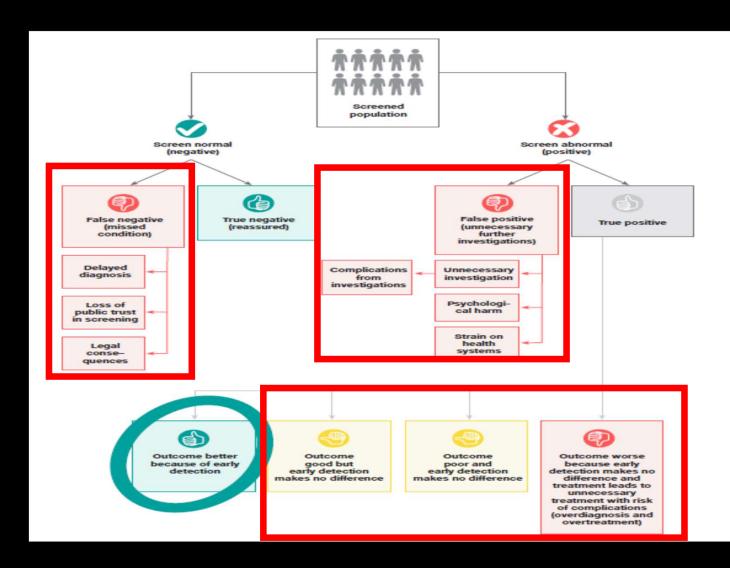

-GSK

-Alnylam

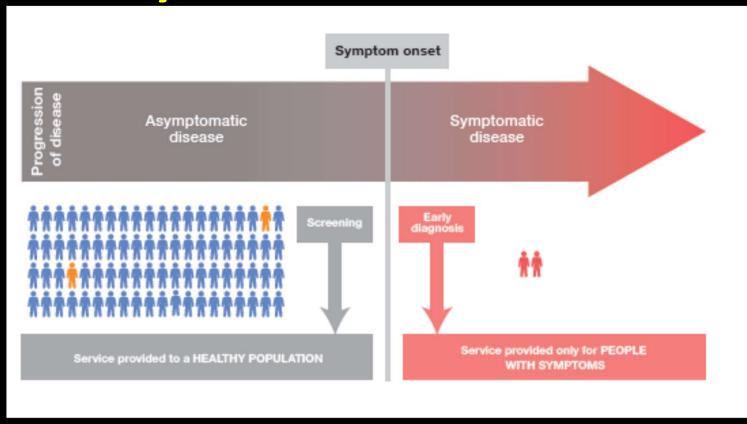
-Intellia


Topics for Brief Discussion

- Active Ascertainment/ Screening
- Health Disparities
- Emerging Treatments
 - Cost and Selection
 - Progression of Disease
- Multidisciplinary Care

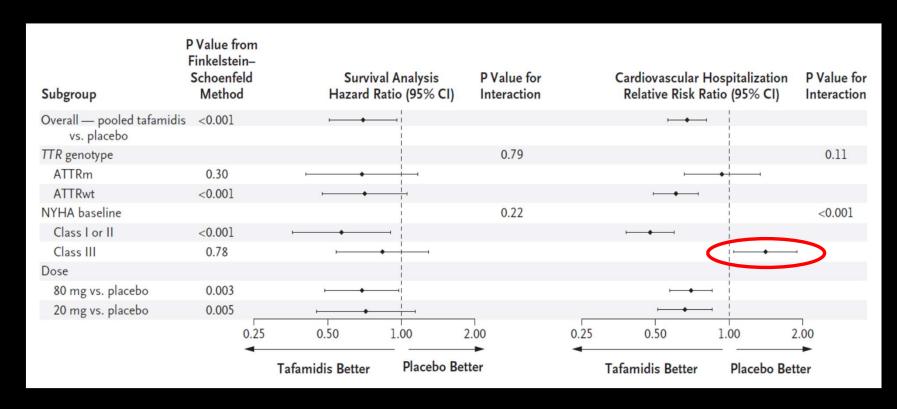

What is screening?

Screening is a process aimed at identifying people in an apparently healthy population who are at higher risk of a health problem or a condition, so that an early treatment or intervention can be offered and thereby reduce the incidence and/or mortality of the health problem or condition within the population.



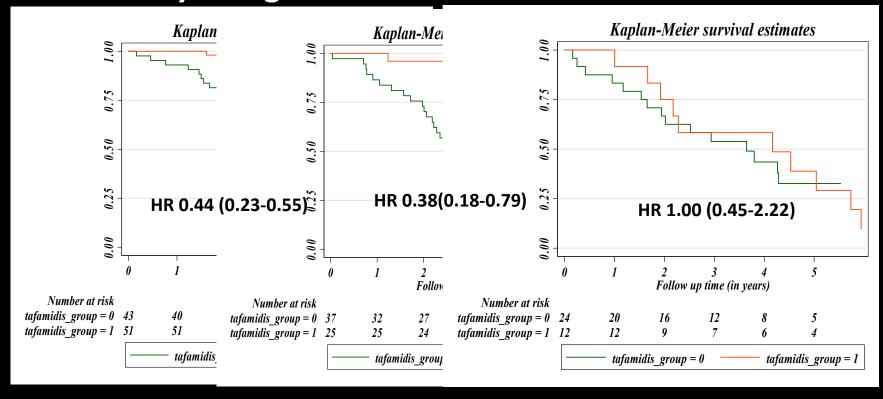
World Health Organization 2020

There are many potential negative consequences of screening programs



Screening versus Early Diagnosis in TTR Cardiac Amyloidosis

World Health Organization 2020


ATTR-ACT trial provides evidence that early diagnosis is important in leveraging beneficial effects of stabilizers.

Maurer MS, et al. N Engl J Med. 2018 Aug 27.

Real World Data for Tafamidis in ATTRwt: The Earlier the Better!!!

Mayo Stage I Mayo Stage 2 Mayo Stage 3

Problems of Spectrum and Bias in Evaluating the Efficacy of Diagnostic Tests

Clinical investigations of the efficacy of diagnostic tests have often produced misleading results so that tests initially regarded as valuable were later rejected as worthless.

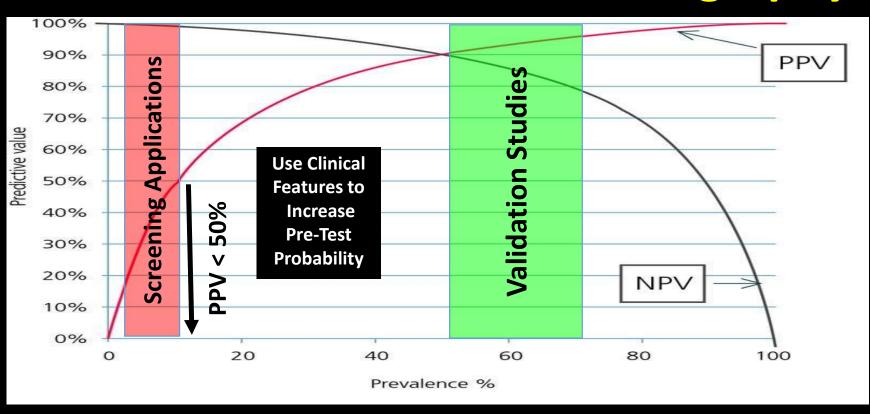
Alvan Feinstein, MD, NEJM 1978

N Engl J Med 1978; 299:926-930

Prevalence of ATTR-CA in Previous Studies of Nuclear Scintigraphy is Very High

Study	# of Participants	Prevalence
Gillmore, EMB subgroup	374	70%
Gillmore, Overall	1217	51%
Castano, et al.	171	71%
Columbia Nuclear Lab	757	36%
University of Pittsburgh	233	26%
Mayo Screening Study	286	6%
SCAN-MP	800 (planned)	~10%

Circulation. 2016;133(24):2404-1; JAMA Cardiol. 2016;1(8):880-889; JACC Cardiovascular Imaging, 2020 Nov 12; Circ Cardiovasc Imaging. 2020 Feb;13(2):e010249; JAMA Cardiol. 2021 Aug 25:e213070..


Impact of Prevalence of ATTR-CA on Positive Predictive Value of Scintigraphy High Prevalence Low Prevalence

	ATTR-CA+	ATTR-CA -
+Scintigraphy	666	34
-Scintigraphy	62	667
	728	701
Prevalence	50.9%	
Sensitivity	91.5%	
Specificity	95.1%	
False Positive Rate	4.9%	
False negative Rate	8.5%	
PPV	95.1%	
NPV	91.5%	

	ATTR-CA+	ATTR-CA -	
+Scintigraphy	92	93	
-Scintigraphy	8	1807	
	100	1900	
Prevalence	5.0%		
Sensitivity	92.0%		
Specificity	95.1%		
False Positive Rate	4.9%		
False negative Rate	8.0%		
PPV	49.7%		
NPV	99.6%		

Circulation. 2016;133:2404-2412.

Impact of Prevalence of ATTR-CA on Positive Predictive Value of Scintigraphy

Criteria Required for Adoption of Screening: Have we met the criteria for ATTR-CA?

Criteria	Yes/No
Important health problem	Yes
Methods / Facilities to diagnose are available	In some areas
Diagnostic test is acceptable to those at risk	Yes
Test has appropriate sensitivity/specificity	Unknown
Favorable cost / benefit analysis	Unknown
Treatment exists for the condition	Yes, but costly
Appropriate timing of intervention	Unknown

Adopted from Wilson & Jungner,. Principles and practice of screening for disease. Geneva: World Health Organization; 1968

Opportunity to address Health Disparities

	Val122Ile	ATTRwt
Age – Median (IQR)	77 (72–80)	79 (73–83)
Black Race	98%	10%
EF -Median IQR	49 (39–62)	58 (45–71)
Survival (median)	2.6 years	4.8 years
6MWT distance	260 (141–364)	345 (230–415)

Circulation. 2019 Jul 2;140(1):16-26

ATTR Cardiomyopathy without Neuropathy Phase 3 Trials

- AG10- ATTRIBUTE-CM
 - Oral compound
 - Phase 3 trial -- fully enrolled
 - 510 Participants Planned
 - 2:1 Randomization
 - Co-Primary Endpoints
 - 6MWTD at 12 months
 - Mortality and CV hospitalizations at 30 months
- Patisiran APOLLO-B
 - IV administration every 3 weeks
 - 300 participants Anticipated enrollment closed in Q2 of 2021
 - 1:1 randomization
 - Change in 6MWT at 12 months

- AKCEA-TTR-L_{RX}: CardioTTRansform
 - SQ compound dose 1 a month
 - 750 participants
 - 1:1 Randomization
 - Primary hierarchical composite endpoint of cardiovascular mortality and recurrent CV clinical events (CV hospitalizations and urgent HF visits)
- Vutrisiran Helios B
 - SQ Compound dose every 3 months
 - 600 participants
 - 1:1 Randomization
 - All-cause mortality and recurrent CV events (CV hospitalizations and urgent HF visits).

ATTR-CM ongoing trials: Will the evidence be sufficient to guide clinical care?

Study	Arms	Combination Therapy	% Using Combination
APOLLO-B	Patisiran vs. Placebo	Patisiran + Tafamidis	Up to 30%
ATTRIBUTE-CM	Acoramidis vs. Placebo	Acoramidis + Tafamidis	Unknown
HELIOS-B	Vutrisiran vs. Placebo	Vutrisiran + Tafamidis	Up to 30%
CardioTTRansform	Eplontersen vs. Placebo	Eplontersen + Tafamidis	No limit

Cost* of therapy is already high, and combination may be prohibitory.

	Diflunisal	Tafamidis	Patisiran	Inotersen
Diflunisal	\$324	\$225,324	\$450,324	\$450,324
Tafamidis	\$225,324	\$225,000	\$675,000	675,000
Patisiran	\$450,324	\$675,000	\$450,000	No rationale
Inotersen	\$450,324	\$675,000	No rationale	\$450,000

^{*} Yearly costs based on Wholesale Acquisition Costs (WAC)

Engaging a multi-disciplinary team: What are the impediments?

- Cardiologist*
- Neurologist*
- Genetic Counselors*
- Gastroenterologist

- Pathologists*
- Nephrologist
- Ophthalmologist
- Orthopedists/Physiatrists

*Key team members

Summary

- Targeted programs at "early diagnosis" of ATTR-CA in those with extra-cardiac manifestations requires rigorously conducted studies to determine if they are beneficial.
- Well designed, ongoing phase III trials will provide important data to determine the risk/benefit profile of stabilizers and silencers and their combination but will likely not provide definitive scientific guidance.
- We need to develop approaches in cardiac amyloidosis that address disparities in care.