Tricuspid Valve Disease: Building Frameworks for Success from Clinical and Real-World Advances

Unmet Needs in the Medical Management of Tricuspid Regurgitation

JoAnn Lindenfeld, MD
Professor of Medicine
Vanderbilt University Medical Center

Relationships with Industry

Consulting

Abbott, ADI, Alleviant, Astra-Zeneca, Boehringer-Ingelheim, Boston Scientific, Cordio, Cytokinetics, CVRx, Edwards Lifesciences, Merck, Medtronic, Vascular Dynamics, Vectorious, Volumetrix, VWave, WhiteSwell

Grants

AHA, NIH, AstraZeneca, Cytokinetics, Abbott

Medical Therapy for Tricuspid Regurgitation


Recommendations for Medical Therapy for TR				
COR	LOE	Recommendations		
2a	C-EO	 In patients with signs and symptoms of right-sided HF attributable to sever TR (Stages C and D), diuretics can be useful. 		
2 a	C-EO	 In patients with signs and symptoms of right-sided HF attributable to severe secondary TR (Stages C and D), therapies to treat the primary cause of HF (eg, pulmonary vasodilators to reduce elevated pulmonary artery pressures, GDMT for HF with reduced LVEF, or rhythm control of AF) can be useful^{1,2} 		

Classification of Pulmonary Hypertension (Secondary Ventricular TR)

CLINICAL CLASSIFICATION

Pulmonary arterial hypertension (PAH)

- Idiopathic/heritable
- Associated conditions

PH associated with left heart disease

- IpcPH
- CpcPH

PH associated with lung disease

- Non-severe PH
- Severe PH

PH associated with pulmonary artery obstructions

- CTEPH
- Other pulmonary obstructions

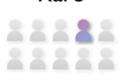
PH with unclear and/or multifactorial mechanisms

- Haematological disorders
- Systemic disorders

PREVALENCE

Rare

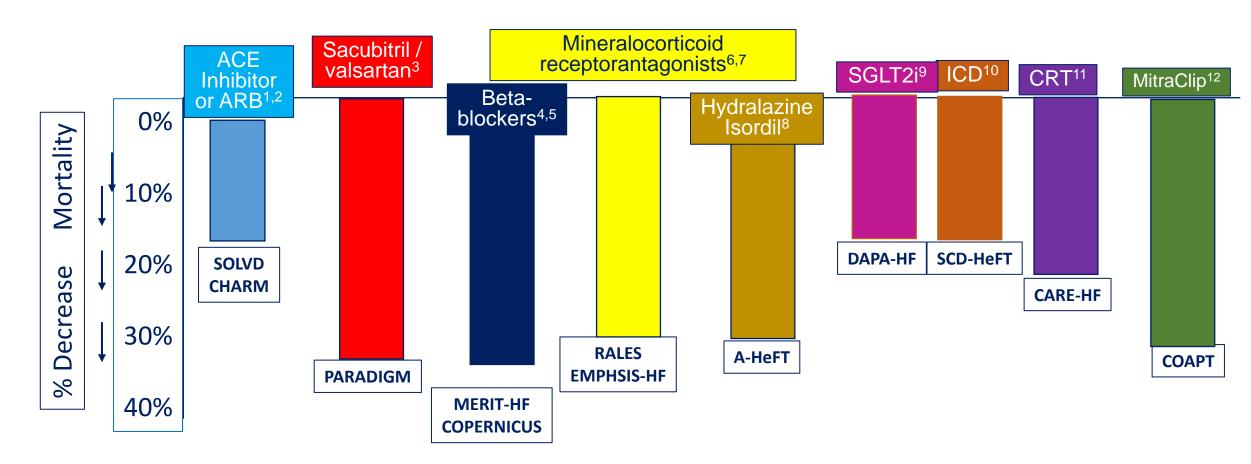
Very common


Common

Rare

Rare

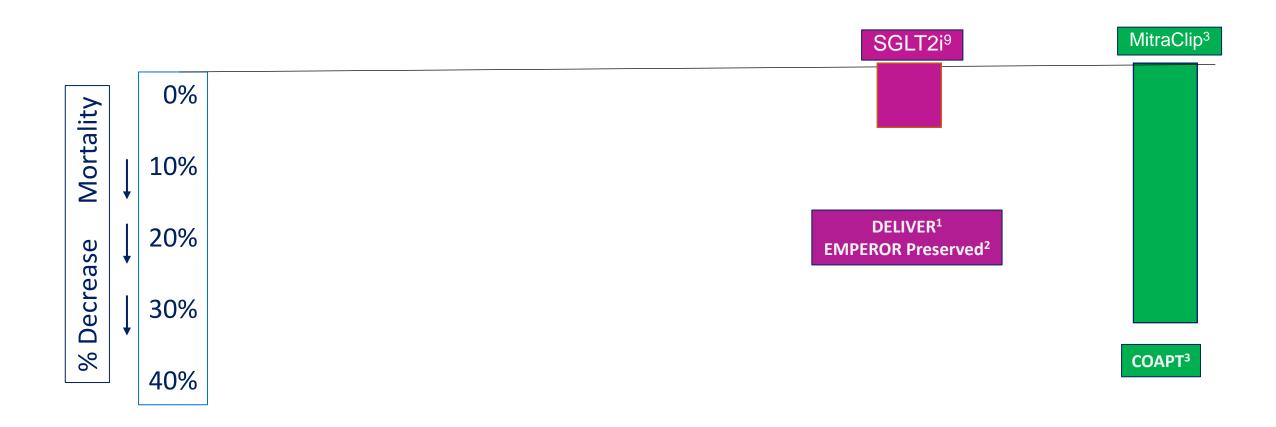
VANDERBILT


Humbert M et al. Eur Heart J 2022;43:3618-3713

Unmet Needs in the Medical Management of Tricuspid Regurgitation

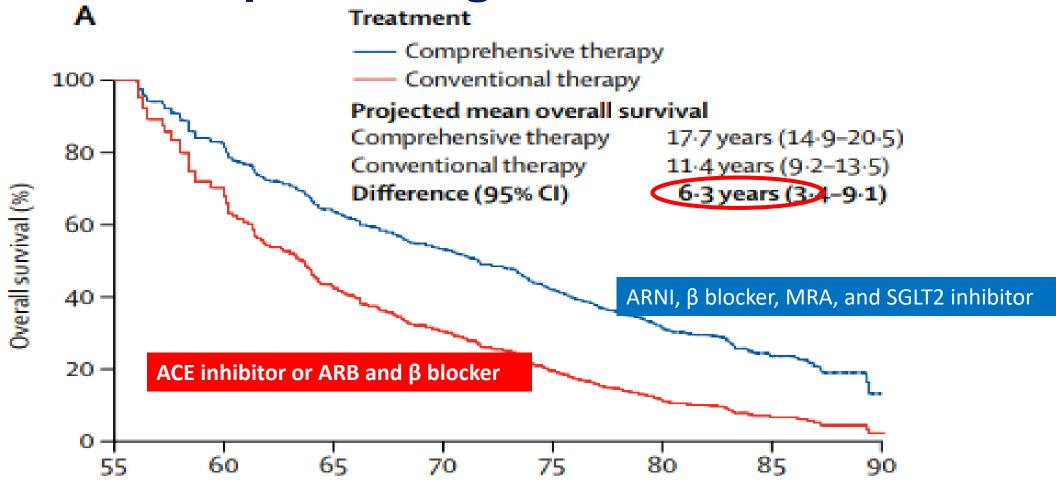
- Do we have drugs that specifically improve RV function?
- Treatment of the underlying disease
 - √ Are changes in GDMT worth measuring?
 - √ How good is GDMT?
 - √ GDMT includes CRT/ICD
- How to assess adequate diuresis
 - **√** What is adequate diuresis?
 - √ Are signs and symptoms enough to assess adequate diuresis?
 - $\sqrt{}$ What should we consider as diuretics?
 - $\sqrt{}$ Are changes in diuretics worth measuring?

Large Mortality Benefits Observed Across Key Therapies for Treatment of Select HFrEF Patients

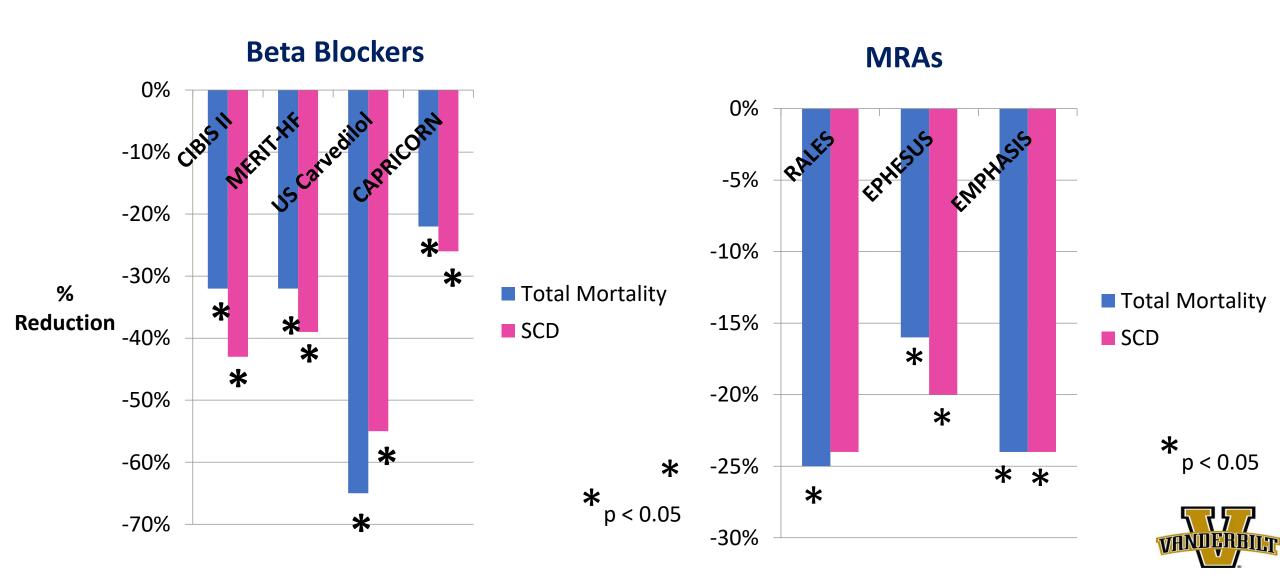

- 1. SOLVD Invest et al. NEJM 1991:325:293-302
- Granger CB et al. Lancet 2003;362:722-6
 McMurray JJ et al. NEJM 2014;317:993-1004
- 4. Hjalmarson A et al. JAMA 2000;283:1295-302

- 5. Packer M et al. NEJM 2001;344:1651-8
- 6. Pitt B et al. NEJM 1999;344:709-17
- 7. Zannad F et al. NEJM 2011364:11-21
- 8. Taylor AL et al. NEJM 2004;351:2049-57

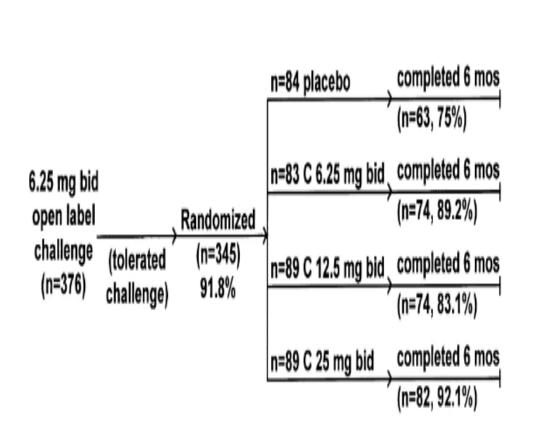
- 9. McMurray JJV et al NEJM 2019
- 10. Bardy GH et al. NEJM 2005;352:225-37
- 10. Cleland JG et al. NEJM 2005;352:1539-
- 11. Stone GW et al. NEJM 2018; Aug 23

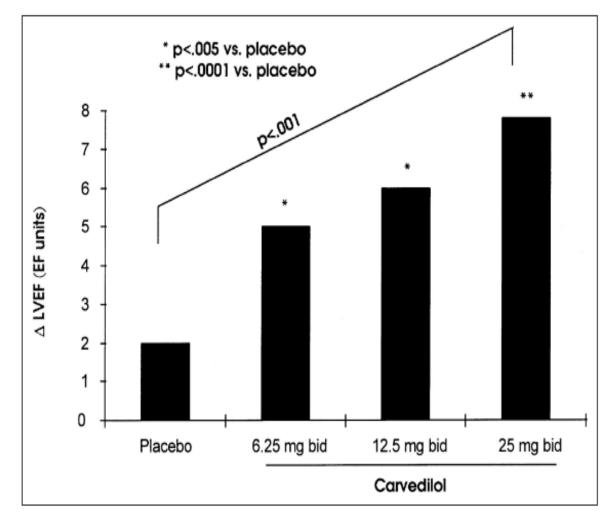


Mortality Benefits Observed Across Key Therapies for Treatment of Select HFpEF Patients



Guideline Directed Medical Therapy(GDMT) is Good and Keeps Getting Better in HFrEF



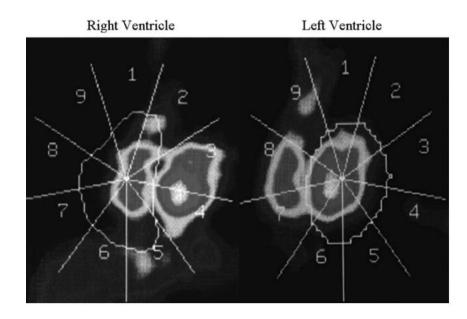


Effect of Beta-Blockers and MRAs on Total Mortality and Sudden Cardiac Death in HFrEF

There Appears to Be a Dose-Response Relationship Between Beta Blockers and LVEF

Medical Treatment of Tricuspid Regurgitation(TR) in Seconary Ventricular TR

- Right Ventricular Afterload
- Right ventricular function
 - **√ Right ventricular free wall**
 - √ Septum (LV function)



Valvular Heart Disease

Right Ventricular Systolic Function in Organic Mitral Regurgitation

Impact of Biventricular Impairment

Thierry Le Tourneau, MD, PhD; Guillaume Deswarte, MD; Nicolas Lamblin, MD, PhD; Claude Foucher-Hossein, MD; Georges Fayad, MD; Marjorie Richardson, MD; Anne-Sophie Polge, MD; Claire Vannesson, MD; Yan Topilsky, MD; Francis Juthier, MD, PhD; Jean-Noel Trochu, MD, PhD; Maurice Enriquez-Sarano, MD; Christophe Bauters, MD, PhD

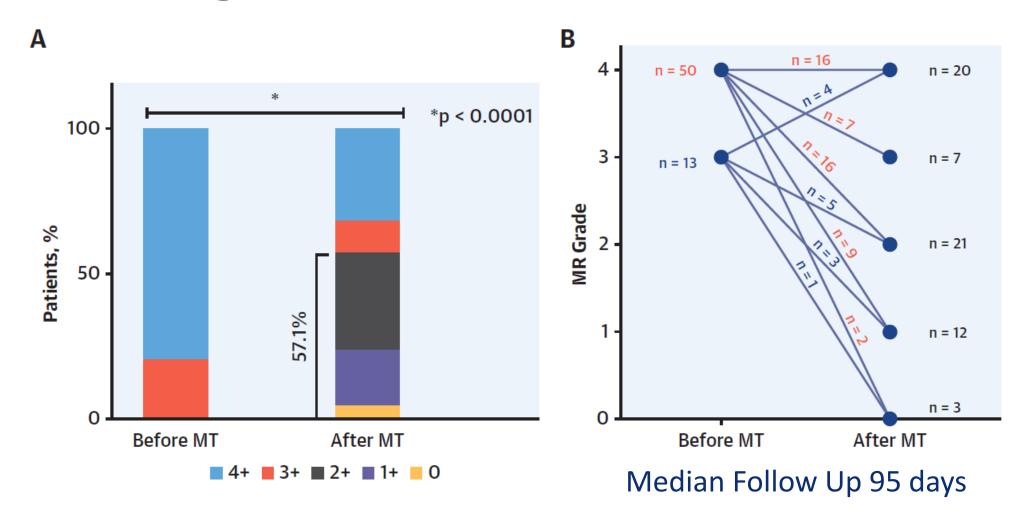

N = 218

Table 3. Echocardiographic and Isotopic Predictors of RV EF in Multivariate Analysis

	R	β	Р
Overall group (n=208)	0.55		
LV septal function		0.42	<0.0001
LV EDD index		-0.22	0.002
PASP		-0.14	0.047
With MR quantitation (n=84)	0.35		
Mitral ERO		-0.28	0.012

Effect of GDMT in 63 patients with HFrEF and SMR grade 3-4+ referred for mTEER

Unmet Needs in the Medical Management of Tricuspid Regurgitation

- Do we have drugs that specifically improve RV function?
- Treatment of the underlying disease
 - √ Are changes in GDMT worth measuring?
 - √ How good is GDMT?
 - √ GDMT includes CRT/ICD
- How to assess adequate diuresis
 - √ What is adequate diuresis?
 - √ Are signs and symptoms enough to assess adequate diuresis?
 - √ What should we consider as diuretics?
 - √ Are changes in diuretics worth measuring?

Signs and Symptoms of Tricuspid Regurgitation and Right Ventricular Failure

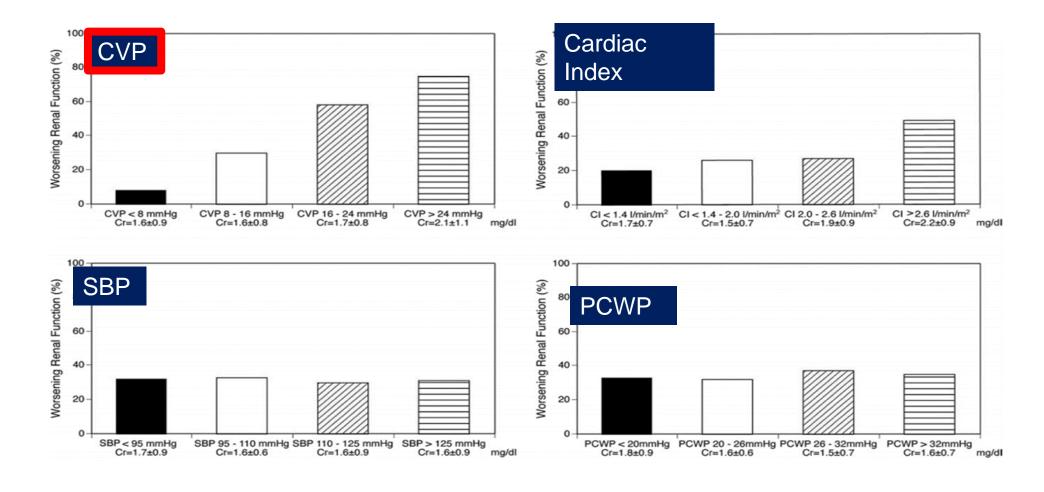
- Hypotension
- Fatigue
- Peripheral Edema
- Abdominal Distension
- Early satiety and anorexia
- Ascites
- Elevated LFTs
- Cardiorenal syndrome

Signs and Symptoms of Tricuspid Regurgitation and Right Ventricular Failure

- Hypotension
- Fatigue
- Peripheral Edema
- Abdominal Distension
- Early satiety and anorexia
- Ascites
- Elevated LFTs
- Cardiorenal syndrome
- Rales
- Orthopnea and PND

Is Septal Position Important to Septal Function?

Study Description


145 subjects, mean left ventricular ejection fraction 20±8%

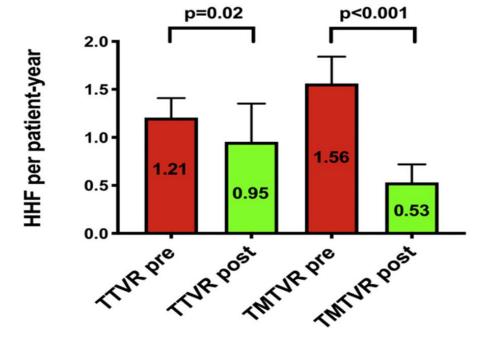
Acute Decompensated HF
Intensive medical therapy guided by pulmonary artery catheter (PAC)
NYHA class III to IV symptoms

Worsening Renal Function(WRF) defined as an increase of serum creatinine 0.3 mg/dl during hospitalization.

Incidence of Worsening Renal Function(WRF) by is most closely correlated with CVP, not PCWP, SBP, or CI

Diuretics

	Primary D	Diuretic Therapy: Loop Diuretics			
Bumetanide	PO/IV	0.5 – 4mg PO 1-2x Daily	Document dose, number of		
		1 – 10mg IV 2-3x Daily	doses/day, and changes		
Furosemide	PO/IV	20 – 160mg PO 1-2x Daily	over time in clinical trials		
		40 – 500mg IV 2-3x Daily			
Torsemide	PO	10 – 100mg PO 1-2x Daily			
Diuretics to add with Loop Diuretics as Combination Diuretic Therapy					
Acetazolamide PO/IV		500mg IV Daily	Rarely used chronically		
Thiazides/Thiazide-like					
Metolazone	PO	2.5 - 10mg 1-2x Daily	Document dose per day and		
Hydrochlorothiazide	PO	25 – 100mg 1x Daily	changes over time in clinical		
Chlorothiazide	PO/IV	500mg – 1g IV 1-2x Daily	trials		
Chlorthalidone	PO	25 – 100mg 1x Daily			
Gi	uideline-Directed	Medical Therapies with Diuretic	Actions		
Sodium glucose co-tran	sporter 2 inhibito	ors*			
Dapagliflozin	PO	10 – 25 mg PO 1x Daily	Document dose per day and		
Empagliflozin PO		10 – 25 mg PO 1x Daily	changes in clinical trials		
Mineralocorticoid Rece	ptor Antagonist*	*			
Eplerenone	PO	12.5 – 50mg 1x Daily	Document dose per day and		
Spironolactone	PO	12.5 – 50mg 1x Daily	changes in clinical trials		


^{*}Common doses may need to be exceeded in patients with severe tricuspid regurgitation

Hahn R et al. JACC HF submitted

Transcatheter Edge-to-Edge Tricuspid Repair for Severe Tricuspid Regurgitation Reduces Hospitalizations for Heart Failure

Mathias Orban, MD, a,b,* Karl-Philipp Rommel, MD,c,* Edwin C. Ho, MD,d,e,* Matthias Unterhuber, MD,c Alberto Pozzoli, MD,e Kim A. Connelly, MD, PhD,d Simon Deseive, MD,a,b Christian Besler, MD,c Geraldine Ong, MD, MSc,d Daniel Braun, MD,a Jeremy Edwards, MD,d Mizuki Miura, MD, PhD,e Gökhan Gülmez, MD,e Lukas Stolz, Cand.Med,a Mara Gavazzoni, MD,e Michel Zuber, MD,e,f Martin Orban, MD,a,b Michael Nabauer, MD,a Francesco Maisano, MD,e Holger Thiele, MD,c Steffen Massberg, MD,a,b Maurizio Taramasso, MD, PhD,e Neil P. Fam, MD, MSc,d,† Philipp Lurz, MD, PhD,c,† Jörg Hausleiter, MD,b,†

The furosemide-equivalent dose was significantly increased from the year before TTVR to baseline but remained stable from the intervention to follow-up: 70 mg (95% CI: 54 to 87 mg) to 85 mg (95% CI: 67 to 104 mg) to 83 mg (95% CI: 58 to 109 mg; p = 0.03)

Diuretic uptitration

12 months before

12 months after

Orbon Motal IACCIIE 202

Impact of Outpatient Diuretic Optimization(ODI) in the TOPCAT Trial

Table 2 Impact of outpatient loop diuretic dose intensification or new initiation of loop diuretics (among patients not on loop diuretics at baseline) on subsequent (time-updated) outcomes

Outcome	Overall population		Placebo arm		Spironolactone arm		Interaction
	Event rate (per 100 py)	HR (95%CI) p-value*	Event rate (per 100 py)	HR (95% CI) p-value*	Event rate (per 100 py)	HR (95% CI) p-value*	p-value
HFH/CVD	No ODI 10.4 (9.3–11.5) ODI 14.6 (12.5–17.0)	1.67 (1.36–2.04) p < 0.001	No ODI 11.3 (9.8–13.0) ODI 15.4 (12.5–18.8)	1.73 (1.31–2.27) p < 0.001	No ODI 9.6 (8.3–11.1) ODI 13.5 (10.6–17.3)	1.60 (1.18–2.16) p = 0.002	0.97
CVD	No ODI 3.1 (2.6–3.7) ODI 7.3 (6.0–8.8)	2.17 (1.64–2.87) p < 0.001	No ODI 3.2 (2.5–4.2) ODI 3.5 (6.7–10.8)	2.65 (1.81–3.89) p < 0.001	No ODI 3.0 (2.4–3.9) ODI 5.7 (4.1–7.9)	1.61 (1.04–2.49) p = 0.034	0.21
ACM	No ODI 5.6 (4.9–6.4) ODI 11.2 (9.6–13.0)	1.75 (1.41–2.16) p < 0.001	No ODI 5.8 (4.8–7.0) ODI 12.0 (9.9–14.6)	1.81 (1.34–2.43) p < 0.001	No ODI 5.4 (4.5–6.5) ODI 10.0 (7.9–12.8)	1.60 (1.16–2.20) p = 0.005	0.61

ODI = any increase In loop diuretics or New prescription

Are we asking the right questions?

Tim McGraw and Faith Hill

Tug McGraw

Tug was asked when pitching in Houston if he prefered grass or Astroturf

"I dunno. I never smoked any Astroturf"

