

MITRAL REGURGITATION ECHO CHECKLISTS TOOL

Comprehensive assessment of qualitative and quantitative parameters, along with the use of standardized nomenclature when reporting echocardiographic findings, helps to better define a patient's MR and guide surgical/interventional decision making.

Clinicians Can Use the ACC MR Echo Reporting Checklists to:

- Improve and standardize echo reporting within and across practices
- Reference expert advice on assessing and integrating qualitative and quantitative parameters to determine the mechanism, etiology, and severity of a patient's MR

The Tables Below Include:

- A brief overview of the approach to using qualitative and quantitative echocardiographic parameters as part of an assessment of a patient's MR
- A list the descriptors of MR mechanism and severity that should be included in standardized echocardiographic reports
- Expert advice on the strengths, weakness, and indications of individual parameters as part of an integrative echocardiographic assessment

All advice in this document is derived from the 2020 Focused Update of the 2017 Expert Consensus Decision Pathway on the Management of Mitral Regurgitation. The Pathway includes additional advice on these as well as other topics relating to the management of mitral regurgitation. The information and advice in this tool are meant to support clinical decision making. They are not meant to represent the only or best course of care, or replace clinical judgment. This tool was developed as part of ACC's Emerging Mitral Regurgitation Clinical Care Initiative which was supported by Founding Sponsor Abbott Vascular.

To provide feedback on this tool, please fill out our feedback survey here.

Assessing MR Mechanism and Etiology

- The identification of MR mechanism and etiology is most commonly achieved by transthoracic echocardiography (TTE). If image quality
 is poor with TTE, transesophageal echocardiography (TEE) may often be needed to define anatomy and function more precisely. TEE
 may identify lesions such as vegetations or flail segments not detected by TTE.
- Mitral valve morphology, LV and LA volumes, and LV size and systolic function are used together to classify the mechanism and etiology of MR.
- Mitral valve morphology should be carefully assessed in multiple views using B-mode imaging to evaluate structure and motion and color flow Doppler (CFD) to localize the origin of MR jet(s).
- Careful measurement of LV and LA volumes and of LV dimensions should be performed according to American Society for Echocardiography guidelines for chamber quantification.

Assessing MR Severity

- Evaluation of MR severity requires a comprehensive TTE study and assessment whereby multiple parameters are evaluated and
 integrated to form a final determination of MR severity. This should include assessment of these parameters listed in the tables
 below, and consideration of the strengths and limitations of those parameters (described in further detail in the 2017 ASE Guidelines
 for Assessment of Native Valve Regurgitation). It is important to emphasize that no single echocardiographic parameter has the
 measurement precision or reproducibility to serve as the sole arbiter of MR severity.
- It is also crucial to record blood pressure, estimated LV systolic pressure in the presence of aortic stenosis or LV outflow obstruction, heart rate, and rhythm at the time of TTE and to incorporate them when grading MR severity.
- Calculation of EROA, a marker of lesion severity, as well as RVol and regurgitant fraction (RF), is strongly recommended for assessing MR severity. They can be measured by several techniques, including the proximal isovelocity surface area (PISA) method, volumetric methods, and 3D imaging. It is crucial to recognize the technical limitations and imprecision of each method and the overlap of values obtained.
- In secondary MR, symptoms, pulmonary congestion on exam or chest x-ray, elevated brain natriuretic peptide (BNP) or N-terminalpro-BNP (NT-pro-BNP), and adjunctive findings on TTE or TEE, such as LV or LA dilation and systolic blunting of the pulmonary venous flow pattern, may be due to the underlying cardiomyopathy and therefore are less helpful in grading MR severity.
- After an initial impression of MR severity is formed, one should next consider whether LA and LV sizes are normal and whether the MR is holosystolic. For example, if one assesses MR as severe on the basis of a large CFD jet, but LA and LV sizes are normal and the MR is limited to late systole, the initial impression is most likely an overestimate. One should consider common reasons for overestimation of MR, such as high MR driving velocity and MR duration limited to very early or very late systole.
- When multiple specific parameters for mild or severe MR align with the initial impression of MR severity, MR can be correctly
 graded with high probability of being accurate. Fortunately, this scenario is relatively common in practice, especially with the
 finding of mild MR and a structurally normal mitral valve; however, when different parameters are discordant among themselves
 or with clinical findings, MR severity should be considered uncertain and further testing pursued. In such cases, TEE may be
 sufficient to define leaflet pathology and quantitate MR severity, although it may underestimate MR severity during general anesthesia
 due to favorable loading conditions. CMR is generally more accurate and reproducible for quantitating RVol and RF as well as LV
 volumes and LVEF.

HEMODYNAMIC AND RHYTHM PARAMETERS

Blood Pressure:

Heart Rate:

Rhythm:

QUALITATIVE PARAMETERS

Leaflet Morphology

- Structurally normal
- □ Nonspecific thickening
- Focal calcific or nodular thickening
- Diffusely calcified
- Myxomatous
- Vegetations
- 🗖 Tumor
- Clefts
- Perforation

Cordal Morphology

Ruptured chordae:

- Anterior mitral leaflet
- Posterior mitral leaflet

Redundant chordae:

- Anterior mitral leaflet
- Posterior mitral leaflet

Annulus Size and Morphology

(commissure-commissure and anterior-posterior measurements)

Normal

Dilated

Calcified (location and extent)

ADVICE

- Mitral leaflet morphology abnormalities should be described and reported in detail (diffuse vs focal, size, leaflet location).
- TEE may identify lesions such as vegetations or flail segments not detected by TTE, especially in cases of poor image quality.
- If the mitral apparatus is structurally normal, significant MR is likely to be secondary. In such cases, the mechanism of MR still needs to be identified.
- When using valve morphology for assessing severity
 o Strength:
 - Some morphological abnormalities, such as a flail leaflet with torn chords, severe leaflet retraction without visible coaptation, or leaflet destruction and perforation due to endocarditis, are specific markers of severe MR.
 - Limitations:
 - Other findings are nonspecific.

Leaflet Mobility	
 Normal Redundant, no prolapse Systolic anterior motion (SAM) Anterior mitral leaflet Posterior mitral leaflet 	
Flail: Anatomic localization: A1 A2 A3 P1 P2 P3 Posteromedial commissure Anterolateral commissure	 Flail leaflets or ruptured papillary muscles are usually specific for severe MR. Occasionally patients with flail leaflets only have moderate MR by integrative assessment. Rare patients with flail leaflet may experience sudden cardiac death. Early surgical referral of the patient with flail leaflet might be considered.
Prolapse: Anatomic localization: A1 A2 A3 P1 P2 P3 Posteromedial commissure Anterolateral commissure	A common mistake in clinical practice is to misconstrue anterior leaflet override as prolapse.
Restricted or Tethered Leaflets Anterior mitral leaflet Posterior mitral leaflet Both	
Mitral Stenosis Rheumatic Degenerative Other	

Carpentier Classification	
□ Normal Leaflet motion (Type I)	 May be seen in primary MR due to endocarditis, perforation, or clefts, or in secondary MR due to pure annular dilation.
Excessive Leaflet motion (Type II)	Most commonly seen with mitral valve prolapse or flail leaflet.
Restricted leaflet motion (Type IIIA): during systole and diastole	 Classic for rheumatic mitral valve disease, radiation- or drug-induced injury, or other inflammatory conditions
Restricted leaflet motion	Typical of MR secondary to ischemic or nonischemic cardiomyopathy
(Type IIIB): during systole only, e.g. ischemic etiology	 The posterior leaflet is often severely tethered and the anterior leaflet overrides it but does not move above the annular plane. This finding should not be equated with anterior leaflet prolapse or with mixed-etiology MR.
Submitral Morphology	
Thickening	 Morphology abnormalities should be described and reported in detail by
Calcification	size and location.
Retraction	
Tumor	
□ Vegetation	
MR Mechanism	
Primary	 Defined by principal involvement of the leaflets and/or chordae tendineae in the pathologic process (e.g., myxomatous disease, endocarditis).
 Secondary Dilated Cardiomyopathy Ischemic Cardiomyopathy 	 Secondary - characterized by incompetence due to adverse changes in left ventricular size, shape, or function with or without annular dilatation (e.g., ischemic cardiomyopathy)
 Other 	 Atrial functional - secondary to pure annular dilation in patients with severe LA dilation. Most commonly seen in persistent or long-standing persistent AF or in restrictive cardiomyopathies, such as that due to amyloid.
	 Most patients with secondary MR have a dilated LV with global or regional wall motion abnormalities with systolic tethering of the leaflets, annular dilation, or both; however, isolated regional wall motion abnormalities, particularly in the inferobasal or posterobasal segments, may cause severe secondary MR despite preserved LV function and dimensions.

-Unrested primary MR eventually results in increasible U dilation/ dysfunction in which both leaflet prolapse and tethening may coexist -Patients with ingrateding secondary MR due to ischemic heart disease or atrial fibrilation who subsequently rupture a chord -Patients with mitral valve prolapse who have a myocardial infarction or develop a cardionyopathy Single • When using Regurgitant Color Flow for assessing severity Single • When using Regurgitant Color Flow for assessing severity - Easy to use; - evaluates spatial orientation of MR jet; - differentiates mild vs. severe • Uimitations: - Group and frame-by-frame analysis of color flow Doppler) - Subject to technical and hemodynamic variation; - Housystolic - Subject to technical and hemodynamic variation; - Group and frame-by-frame analysis of color flow Doppler) - Subject to technical and hemodynamic variation; - Housystolic - Simple, readily available; - Can be underestimated with wall-limpinging jets; - Simple, readily available; - Cartuly directed - Simple, readily available; - Origetricity directed - Complementary data; - Desteriorly directed - Gualitative; - Complete signal difficult to obtain in eccentric jet; - gain dependent - If the jet differction is eccentric, but the mechanism uncertain, T	Mixed	Due to both primary and secondary causes. Examples of mixed pathology include:
disease or atrial fibrillation who subsequently rupture a chord -Patients with mitral valve prolapse who have a myocardial infarction or develop a cardiomyopathy MR Jets • When using Regurgitant Color Flow for assessing severity Single • Strengths: M Ultiple • Easy to use; - evaluates spatial orientation of MR jet; - differentiates mild vs. severe (WD toppler and frame-by-frame analysis of color flow Doppler) - Subject to technical and hemodynamic variation; - Holosystolic - can be underestimated with wall-mininging jets; - Early systolic - image quality-dependent - Midsystolic • When using Jet Profile - CW to assess MR severity - Late systolic - Simple, readily available; - Complementary data; - complementary data; - Complementary data; - complementary data; - Gain dependent If the jet direction, is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. - High-velocity Mirected - gain dependent - Wenevelocity jet's (e.g. 4 m/s) suggest high LA pressure and How LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) - In addition to jet driving velocity and eccentricit, CPD jet size is affected by multiple other		
MR Jets • When using Regurgitant Color Flow for assessing severity Single • Strengths: Multiple - Easy to use; - evaluates spatial orientation of MR jet; - differentiates mild vs. severe (CW Doppler and frame-by-frame analysis of color flow Doppler) - Subject to technical and hemodynamic variation; - Holosystolic - can be underestimated with wall-impinging jets; - Early systolic - image quality-dependent Mkdsystolic • When using Jet Profile -CW to assess MR severity Late systolic - subject to technical and hemodynamic variation; - can be underestimated with wall-impinging jets; - image quality-dependent MR Jet Direction - Qualitative; - Centrally directed - simple, readily available; - posteriorly directed - complementary data; - posteriorly directed - complete signal difficult to obtain in eccentric jet; - gain dependent High-velocity MR jets, such as occur with hypertension, aortic stenosis, or UV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. - Interiorly directed - If the jet director is countic, by the interpreting physician. - Laterally directed - Low-velocity ist (e.g., 4 m/s) suggest high LA pressure and low LV pressur		
Single • Strengths: Multiple • Strengths: MR Jet Duration - Easy to use; (CW Doppler and frame-by-frame analysis of color flow Doppler) - evaluates spatial orientation of MR jet; Holosystolic - outperstandard regulative due with wall-impinging jets; Early systolic - image quality-dependent Midsystolic - when using Jet Profile – CW to assess MR severity Late systolic - Simple, readily available; CW Doppler density - Simple, readily available; Centrally directed - complementary data; Eccentric - gain dependent Posteriorly directed - gain dependent Anteriorly directed - Gualitative; Anteriorly directed - Gualitative; Medially directed - Use direction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity its (e.g. 4 m/s) suggest high LA pressure and low LV pressure and herefore indicate sever MW with hemodynamic corrupromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to it driving velocity and eccountic fact severe MW with themodynamic factors. Thus, both U.S. and European guidelines recomment that MR jet size assefeed by CPD		
Multiple - Easy to use; - evaluates spatial orientation of MR jet; - differentiates mild vs. severe (CW Doppler and frame-by-frame analysis of color flow Doppler) - Subject to technical and hemodynamic variation; - Holosystolic - can be underestimated with wall-impinging jets; - limitations: - image quality-dependent Midsystolic - Strengths: - Bimodal - Simple, readily available; - CW Doppler density - easy assessment of MR timing • Limitations: - qualitative; - Centrally directed - complementary data; - Dosteriorly directed - gain dependent - Nutriving Viercetd - If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. - High-velocity jets (eg. 4. 4rv)s suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic corticity, CFD jet size is affected by multiple other technical and hemodynamic fetors. Thus, both U.S and European guidelines recommend that MR jet size assessed by CFD	MR Jets	When using Regurgitant Color Flow for assessing severity
Image: Comparison of the second se	□ Single	• Strengths:
MR Jet Duration - differentiates mild vs. severe (CW Doppler and frame-by-frame analysis of color flow Doppler) - Limitations: Holosystolic - Subject to technical and hemodynamic variation; Early systolic - can be underestimated with wall-impinging jets; Late systolic - image quality-dependent Midsystolic - Subject to technical and hemodynamic variation; Late systolic - image quality-dependent When using Jet Profile -CW to assess MR severity • Strengths: Bimodal - Simple, readily available; CW Doppler density - easy assessment of MR timing • Limitations: - Qualitative; - complementary data; - complementary data; - complet signal difficult to obtain in eccentric jet; - gain dependent Ithe jet direction - Complete signal difficult to obtain in eccentric, net, in the jet like is to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition	🗖 Multiple	– Easy to use;
Import Direction		– evaluates spatial orientation of MR jet;
analysis of color flow Doppler) - Subject to technical and hemodynamic variation; Holosystolic - can be underestimated with wall-impinging jets; Bimodal - image quality-dependent CW Doppler density • When using Jet Profile – CW to assess MR severity Bimodal - Simple, readily available; CW Doppler density - easy assessment of MR timing • Limitations: - Qualitative; Centrally directed - complementary data; Posteriorly directed - gain dependent Posteriorly directed - fifthe jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD	MR Jet Duration	– differentiates mild vs. severe
- Subject to technical and hemodynamic variation, - Subject to technical and hemodynamic variation, - Can be underestimated with wall-impinging jets; - Can be underestimated with wall-impinging jets; - image quality-dependent Midsystolic - Late systolic Bimodal - CW Doppler density - Centrally directed - Complementary data; - Completerions: - Qualitative; - Complementary data; - Completerions: - Qualitative; - Complementary data; - Completerions: - Qualitative; - Complete signal difficult to obtain in eccentric jet; - gain dependent - If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. - High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. - Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) - In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical a		• Limitations:
Early systolic - image quality-dependent Midsystolic - when using Jet Profile -CW to assess MR severity Late systolic • Strengths: Bimodal - Simple, readily available; CW Doppler density - easy assessment of MR timing * Limitations: - Qualitative; Centrally directed - complementary data; Eccentric - gain dependent Posteriorly directed - gain dependent Anteriorly directed - lift be id direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both US, and European guidelines recommend that MR jet size assessed by CFD	analysis of color flow Doppler)	 Subject to technical and hemodynamic variation;
Image quality dependent Image quality directed <		 – can be underestimated with wall-impinging jets;
Late systolic ^o Strengths: Bimodal ^o Strengths: CW Doppler density ^o easy assessment of MR timing Late systolic ^o Simple, readily available; CW Doppler density ^o easy assessment of MR timing Laterally directed ^o Qualitative; Centrally directed ^o complementary data; Posteriorly directed ^o gain dependent Posteriorly directed ^o If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD		– image quality-dependent
Bimodal - Simple, readily available; CW Doppler density - easy assessment of MR timing CW Doppler density - easy assessment of MR timing Culitative; - Qualitative; Centrally directed - complementary data; Posteriorly directed - complete signal difficult to obtain in eccentric jet; Posteriorly directed - gain dependent Laterally directed If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD		 When using Jet Profile –CW to assess MR severity
CW Doppler density - easy assessment of MR timing CW Doppler density - easy assessment of MR timing Limitations: - Qualitative; Centrally directed - complementary data; Posteriorly directed - complete signal difficult to obtain in eccentric jet; Posteriolaterally directed - gain dependent Laterally directed - If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD		• Strengths:
MR Jet Direction - Qualitative; Centrally directed - complementary data; Posteriorly directed - complete signal difficult to obtain in eccentric jet; Posteriolaterally directed - gain dependent Laterally directed If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD		– Simple, readily available;
MR Jet Direction – Qualitative; Centrally directed – complementary data; Eccentric – complete signal difficult to obtain in eccentric jet; Posteriorly directed – gain dependent Laterally directed If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD	CW Doppler density	 easy assessment of MR timing
 Centrally directed Centrally directed Posteriorly directed Posterolaterally directed Laterally directed Anteriorly directed Anteromedially directed Medially directed Medially directed Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD 		Limitations:
 Complete signal difficult to obtain in eccentric jet; - complete signal difficult to obtain in eccentric jet; - gain dependent If the jet direction is eccentric, but the mechanism uncertain, TEE is indicated to clarify leaflet pathology and motion. High-velocity MR jets, such as occur with hypertension, aortic stenosis, or LV outflow tract obstruction, will make MR appear worse on CFD, which should be recognized by the interpreting physician. Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD 	MR Jet Direction	_ Qualitative;
 Posteriorly directed Posterolaterally directed Laterally directed Anteriorly directed Anteriorly directed Anteromedially directed Medially directed Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD 	Centrally directed	– complementary data;
 Posterolaterally directed Laterally directed Anteriorly directed Anteromedially directed Medially directed Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD 	Eccentric	 complete signal difficult to obtain in eccentric jet;
 Laterally directed Anteriorly directed Anteromedially directed Medially directed Medially directed Low-velocity jets (e.g., 4 m/s) suggest high LA pressure and low LV pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD 	Posteriorly directed	– gain dependent
 Anteriorly directed Anteromedially directed Medially directed Medially directed In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD 	,	
 pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW) Doppler beam with the MR jet.) In addition to jet driving velocity and eccentricity, CFD jet size is affected by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD 	Anteriorly directed	or LV outflow tract obstruction, will make MR appear worse on CFD,
by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD	Medially directed	pressure and therefore indicate severe MR with hemodynamic compromise (assuming proper alignment of the continuous wave (CW)
		by multiple other technical and hemodynamic factors. Thus, both U.S. and European guidelines recommend that MR jet size assessed by CFD

Pulmonary Vein Flow Profile	
Normal	When using pulmonary vein flow to assess MR severity
Systolic flow blunting	• Strengths:
Systolic flow reversal	– Simple;
Number of veins exhibiting systolic reversal	 – systolic flow reversal is specific for severe MR • Limitations:
	 Influenced by LA pressure, atrial fibrillation;
	 not accurate if MR jet directed into the sampled vein;
	– absence does not rule out severe MR
Mitral Inflow Profile	
E dominant pattern	When using Peak Mitral E Velocity to assess MR severity
A dominant pattern	• Strengths:
	– Simple, readily available;
	– A-wave dominance excludes severe MR
	• Limitations:
	 Influenced by LA pressure/compliance, LV relaxation, MV area, and atrial fibrillation;
	 complementary data only;

Vena Contracta	When using vena contracta width to assess MR severity
Vena Contracta width (mm)	When using vena contracta width to assess MR severity
	• Strengths:
	– Quick and easy to use;
	 independent of hemodynamic and instrumentation factors;
	– applies to eccentric jets;
	– can differentiate mild vs. severe MR
	• Limitations:
	 Not applicable to multiple jets;
	 intermediate values require confirmation;
	 small measurement errors can lead to big changes;
	– 2D measure of a 3D structure;
	 limited lateral resolution
U Vena Contracta area (cm²)	
Threshold values specific for	
severe MR EROA $\ge 0.4 \text{ cm}^2$	 EROA and RVol thresholds that define severe MR should account for LV volumes and ejection fraction.
□ Regurgitant volume > 60 mL/beat	• It is recognized that the accepted EROA threshold for severe MR (>0.40
□ Regurgitant fraction > 50%	cm ²) can be lower in patients with secondary MR and elliptical orifices, emphasizing the need for an integrative assessment of severity.
	 In secondary MR, the shape of the regurgitant orifice is often markedly crescentic, leading to underestimation of EROA by the PISA method because the latter assumes a circular orifice. This inaccuracy can be ameliorated by 3D PISA measurements or direct 3D measurement of EROA by TTE or TEE.
Mitral valve area (cm²):	
□ 2D planimetry (Biplane)	 For patients with coexisting rheumatic or degenerative mitral stenosis or for planning edge-to-edge clip
□ 3D planimetry (Multiplanar	When using PISA to assess MR severity:
Reconstruction)	• Strengths:
Pressure half-time	 Can be applied to eccentric jets (when angle-corrected);
Continuity equation	 not affected by etiology of MR;
D PISA	– quantitative;
	 provides both lesion severity (EROA) and volume data (RVoI);

Mean transmitral Doppler Gradient: mm Hg @ heart rate	(using PISA to assess MR severity, cont'd) • Limitations: - Not valid with multiple jets; - provides peak flow and maximal EROA; - interobserver variability; - errors in radius measurement are squared; - multiple potential sources of measurement error • Input concurrently recorded during CW Doppler acquisition
Left atrial size	
 Left atrial dilation Left atrial volume index: mL/m² 	 When using LA and LV size to assess MR severity Strengths: Enlargement sensitive for chronic severe MR;
Left ventricular size	– important for outcomes;
 End diastolic LV dimension End systolic LV dimension and/or End diastolic volume/volume index End systolic volume/volume index Left ventricular function Ejection fraction (normal > 60%) Global LV dysfunction Regional LV Dysfunction (detail wall motion) 	 normal size virtually excludes severe chronic MR Limitations: Enlargement seen in other conditions (nonspecific); may be normal in acute severe MR LV or LA dilation in chronic primary MR is most often a consequence of the MR and a strong clue that the MR is severe. Exceptions could occur if a patient with long-standing mitral valve prolapse and mild MR develops an ischemic or nonischemic cardiomyopathy. On the other hand, when MR is primary and LV and LA size are normal, severe MR is very unlikely.
Right ventricular size (tricuspid annular and midventricular measurements)	
Normal	
Dilated	
Right ventricular systolic function	
NormalImpaired	

Tricuspid annulus
🗆 Normal
Dilated
Tricuspid valve regurgitation
🗖 Mild
□ Moderate
Severe Severe
PA systolic pressure:
mm Hg
Estimated RA pressure:
mm Hg