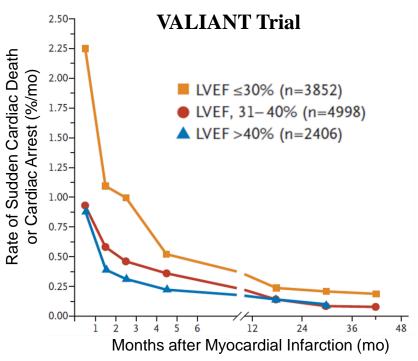
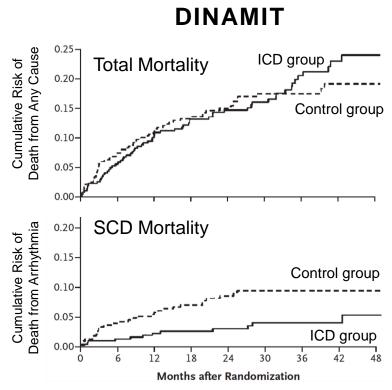

Disclosures

- ClinicalTrials.gov registration: NCT01446965
- Funding
 - NIH NHLBI (U01HL089458 & U01HL089145) funded
 Coordinating Centers until 2012
 - ZOLL funded study throughout and Coordinating Centers after 2012

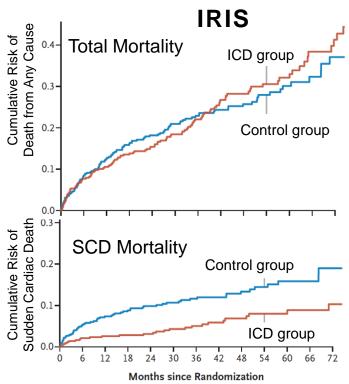


Background: SCD is high after MI

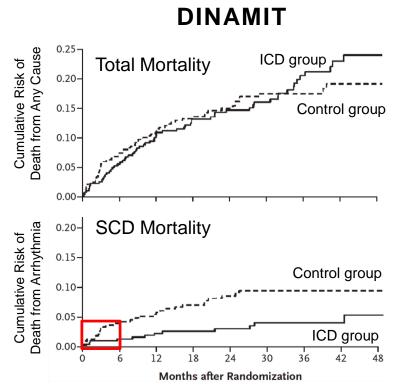
Adabag, et al. JAMA 2008



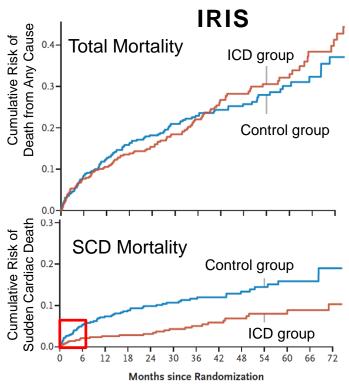
VALIANT—Solomon, et al. NEJM 2005



Background: No benefit from early ICD

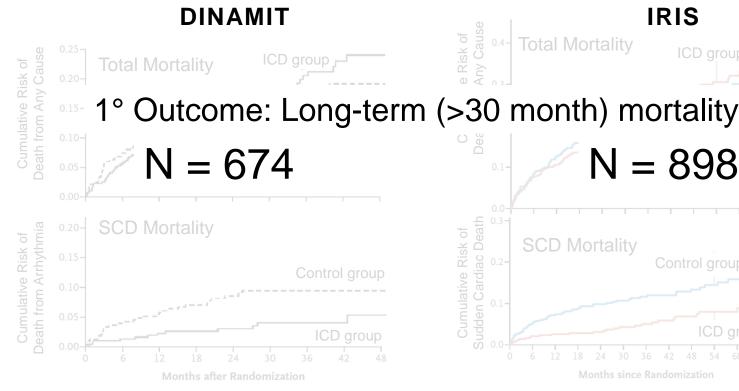


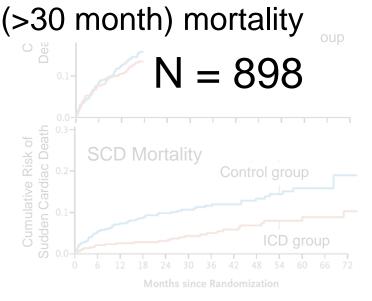
IRIS: Steinbeck, et al. NEJM 2009





Background: No benefit from early ICD





Background: No benefit from early ICD

Risk of

DINAMIT: Hohnloser, et al. NEJM 2004

IRIS

IRIS: Steinbeck, et al. NEJM 2009

Background: Guideline recommendations

Al-Khatib SM, et al. 2017 VA/SCD Guidelines

6.1.2. Primary Prevention of SCD in Patients with Ischemic Heart Disease

Recommendations for Primary Prevention of SCD in Patients With Ischemic Heart Disease			
COR	COR LOE Recommendations		
1	Α	1. In patients with LVEF of 35% or less that is due to ischemic heart disease who are at least 40 days post-MI and at least 90 days post revascularization, and with NYHA class II or III HF despite GDMT, an ICD is recommended if meaningful survival of greater than 1 year is expected (1,2).	

Background: VEST rationale

- ICD not indicated in immediate post-MI period
- Some early mortality not due to arrhythmias immediately post-MI, thus not preventable by ICD
- LVEF may recover over 3 months post-MI

Can a wearable cardioverter defibrillator (WCD) reduce SD mortality in the immediate post-MI period (<90 days) in patients with reduced LVEF, as a bridge to evaluation for ICD?

Methods: Study design

- Multi-center, randomized, open-label trial
- Participants enrolled within 7 days of hospital d/c with acute MI and EF≤35%
- Randomized 2:1 to receive:
 - Wearable cardioverter defibrillator (WCD) + guidelinedirected therapy or
 - Guideline-directed medical therapy alone
- MD's & sites blinded to detected arrhythmias
- Crossovers & ICDs prohibited (except for secondary prevention during follow-up)

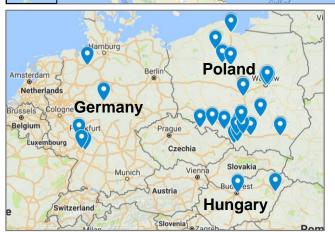
Methods: Inclusion & exclusion

Inclusion Criteria

- ≤7 days of hospital discharge for acute MI
- EF ≤35% assessed:
 - ≥8 hrs after MI
 - ≥8 hrs after PCI
 - ≥48 hrs after CABG

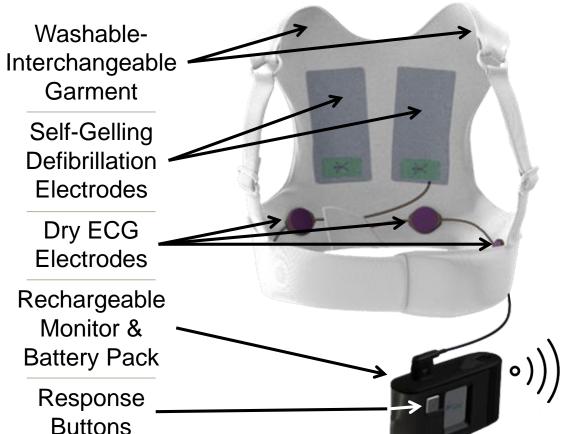
Exclusion Criteria

- Existing ICD
- Significant valve disease
- Unipolar pacing system
- Chronic hemodialysis
- Chest too small/large for WCD
- Discharge to SNF for >7 days
- Pregnancy



Methods: Screening & enrollment

- Screening & enrollment between 2008—2017
- 108 enrolling sites
 - 76 US sites
 - 6 German sites
 - 24 Polish sites
 - 2 Hungarian sites



Methods: Intervention-WCD

Monitors

- Wear-time
- Noise
- Device warning
- Asystole
- VT/VF

Treatment

VT/VF

Investigators blinded to data

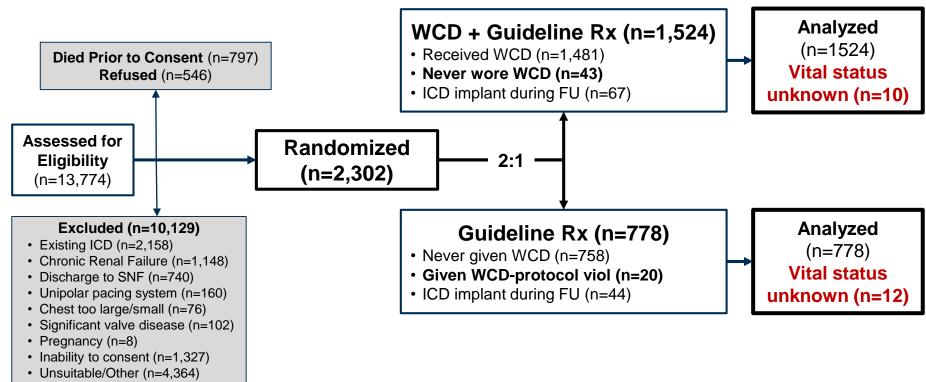
Methods: Outcomes

- Follow-up at 1 month & 3 months
- Search NDI at end of study
- Primary Outcome: SCD & death due to ventricular arrhythmias
- Secondary outcomes
 - Total mortality & Non-sudden death
 - Cause-specific death
 - Non-fatal outcomes
 - CV Hospitalizations
 - WCD compliance
 - Adverse events

Methods: Analysis plan

Primary Analysis: Intention-to-treat

 Participants with indeterminate causes of death or unknown vital status are treated as not having primary outcome


Secondary Analyses

 Weighted sensitivity analyses excluding unknown vital status and indeterminate causes of death from denominator

Results: CONSORT diagram

Mean Follow-up = 84.3 ± 15.6 days

Results: Participant characteristics

Characteristic	WCD Group (N=1524)	Control Group (N=778)
Age, mean ± SD	60.9 ± 12.6	61.4 ± 12.3
Men, n (%)	1107 (72.8%)	577 (74.7%)
Body mass index, Mean ± SD	28.4 ± 5.5	28.6 ± 6.6
Smoker, n(%)	561 (36.9%)	273 (35.5%)
Race n (%)		
White	1278 (84.1%)	636 (82.6%)
Black	143 (9.4%)	75 (9.7%)
Asian	23 (1.5%)	14 (1.8%)
Native American/Alaskan	25 (1.7%)	12 (1.6%)
Pacific Islander/Hawaiian	1 (0.1%)	0 (0%)
Mixed	20 (1.3%)	14 (1.8%)
Hispanic, n (%)	85 (5.6%)	34 (4.4%)

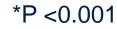
Results: Prior history

Characteristic	WCD Group (N=1524)	Control Group (N=778)
Diabetes Mellitus, n (%)	496 (32.6%)	246 (31.7%)
Hypertension, n(%)	993 (65.3%)	501 (64.6%)
Prior MI, n (%)	380 (25.1%)	193 (24.9%)
Prior CABG, n (%)	133 (8.8%)	70 (9.0%)
Prior PCI, n (%)	374 (24.6%)	202 (26.0%)
Prior CHF, n (%)	246 (16.2%)	146 (18.9%)
NYHA Classification, n (%)		
I	691 (45.5%)	326 (42.1%)
II	528 (34.8%)	286 (36.9%)
III	211 (13.9%)	116 (15.0%)
IV	46 (3.0%)	18 (2.3%)

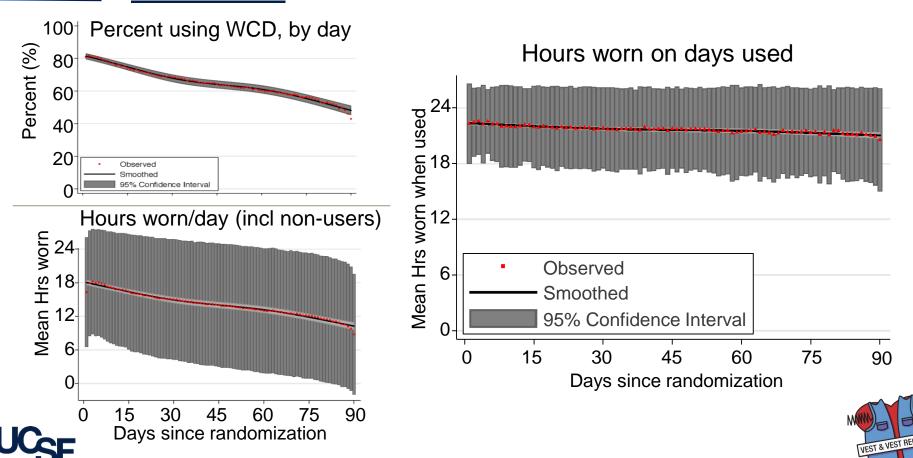
Results: Characteristics of index MI

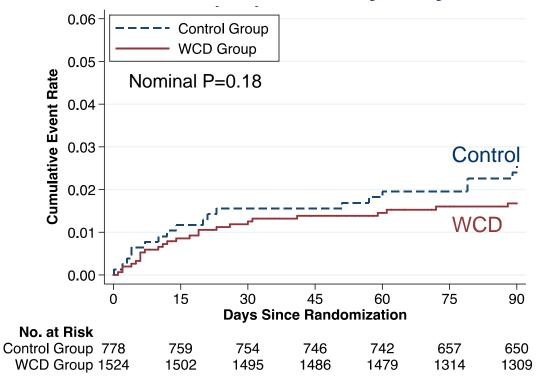
Characteristic	WCD Group (N=1524)	Control Group (N=778)
LVEF	28.2 ± 6.1%	28.2 ± 5.9%
PCI during MI hospitalization	1272 (84.2%)	650 (84.1%)
Thrombolytics during MI hospitalization	118 (7.8%)	71 (9.2%)
CABG during index hospitalization	14 (0.9%)	12 (1.5%)
Cardiac Arrest/VF	169 (11.2%)	70 (9.1%)
Pulmonary Edema requiring Intubation	162 (10. 7%)	88 (11.4%)
Intra-aortic Balloon Pump	173 (11.5%)	93 (12.0%)
Cardiogenic Shock	136 (9.0%)	79 (10.2%)

Results: Medical treatment


Characteristic	WCD Group (N=1524)	Control Group (N=778)
ASA	1328 (87.1%)	677 (87.0%)
Other antiplatelet	1378 (90.4%)	679 (87.3%)
Statin	1384 (90.8%)	695 (89.3%)
Beta blocker (including carvedilol)	1407 (92.3%)	716 (92.0%)
ACEI/ARB	1330 (87.3%)	665 (85.5%)
Eplerenone/spironolactone	661 (43.4%)	342 (44.0%)
Other diuretic	736 (48.3%)	384 (49.4%)
Amiodarone	106 (7.0%)	55 (7.1%)

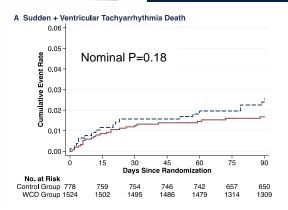
Results: Crossover treatment

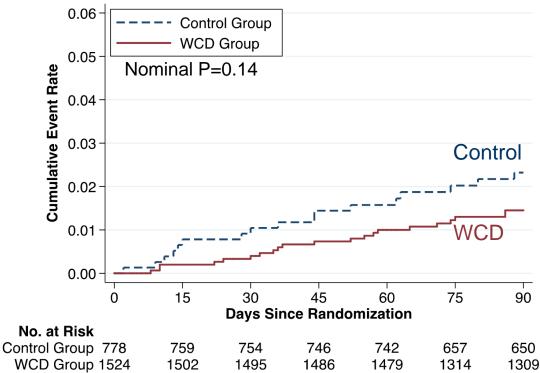

Characteristic	WCD Group (N=1524)	Control Group (N=778)
WCD received, n (%)	1455 (95.5%)	20 (2.6%)*
Average hours/day WCD worn	14.1 ± 9.3	0.8 ± 3.9*
ICD during follow up (<90 days), n (%)	67 (4.4%)	44 (5.7%)
ICD Implant timing (days since randomization), median (IQR)	62 (24-81)	58 (25-77)



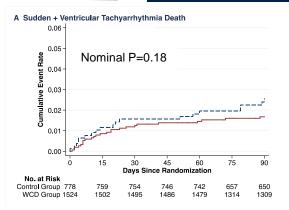
Results: WCD wear-time

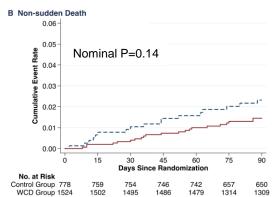
Results: Outcomes, intention-to-treat

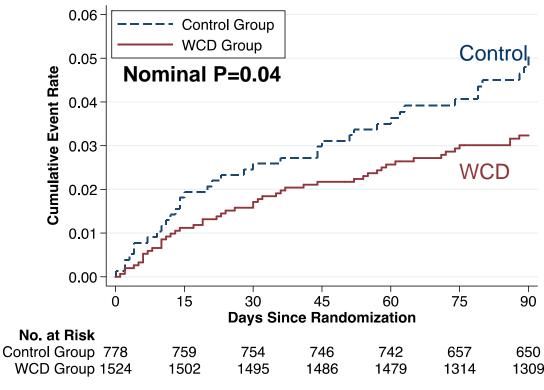

A Sudden + Ventricular Tachyarrhythmia Death



Results: Outcomes, intention-to-treat




B Non-sudden Death



Results: Outcomes, intention-to-treat

C Death from Any Cause

VEST & VEST REGISTRY

Results: Cause-specific death

Clinical event type	WCD (N=1524)	Control (N=778)	P value*
FATAL EVENTS, n (%)			
Sudden Death (1° outcome)	25 (1.6%)	19 (2.4%)	0.18
Non-sudden death	21 (1.4%)	17 (2.2%)	0.15
Congestive heart failure death	10 (0.7%)	5 (0.6%)	1.0
Recurrent MI death	1 (0.1%)	1 (0.1%)	1.0
Stroke death	0 (0.0%)	4 (0.5%)	0.01
Other cardiovascular death	5 (0.3%)	3 (0.4%)	1.0
Other death	5 (0.3%)	4 (0.5%)	0.72
Indeterminate death	2 (0.1%)	2 (0.3%)	0.83
Death, any cause	48 (3.1%)	38 (4.9%)	0.04
NON-FATAL EVENTS, n (%)			
Rehospitalization, cardiovascular	334 (22%)	174 (22%)	0.81
Rehospitalization, any cause	475 (31%)	253 (33%)	0.51

Results: WCD therapies & events

Therapies	WCD Group (N=1524)	Control Group (N=778)	
Appropriate shocks (p=0.002)			
1 appropriate shock	13 (0.9%)	0 (0%)	
≥2 appropriate shocks 7 (0.5%)		1 (0.1%)	
Inappropriate shocks (p=0.05)			
1 inappropriate shock	8 (0.5%)	0 (0%)	
≥2 inappropriate shocks 2 (0.1%)		0 (0%)	
Aborted shocks (p<0.001)			
1 aborted shock	43 (2.8%)	0 (0%)	
≥2 aborted shocks	12 (0.8%)	0 (0%)	
>5 aborted shocks	15 (1.0%)	0 (0%)	

Results: Pre-specified symptoms

Characteristics	WCD	Control	P value
Fatigue	36.0%	38.8%	0.21
Back pain	20.0%	19.4%	0.73
Trouble sleeping	39.0%	37.3%	0.47
Dizziness	24.3%	23.5%	0.66
Fainting	4.2%	5.1%	0.34
Nausea	9.4%	12.0%	0.06
Headache	18.3%	19.1%	0.66
Palpitations	23.1%	25.7%	0.18
Chest pain	18.7%	21.4%	0.14
Shortness of breath	38.7%	45.4%	0.003
Rash in any location	15.2%	7.1%	<0.001
Rash on torso	12.9%	3.8%	<0.001
Itch in any location	17.2%	6.4%	<0.001
Itch on torso	14.5%	3.1%	<0.001

Discussion: Sudden vs total mortality

- Possible misclassification of sudden deaths
 - Reducing power for SD outcome but not total mortality
 - 14 of 20 participants who received an appropriate shock survived to 90 days
- WCD may confer additional protection beyond SD
 - Earlier care for bradycardia, NSVT or aborted shocks
- Reduced anxiety or increased medication compliance
 - More shortness of breath in controls

Discussion: Limitations

Participants and investigators not blinded

- Differences in shortness of breath between groups
- No differences in prescribing guideline-directed Rx

Crossovers

- 20 participants in Control group received the WCD
- 19% in WCD group did not use the WCD
- Should bias results toward the null, but still found a difference in total mortality

Conclusions

- VEST represents the first randomized controlled trial of the WCD
- The WCD did not statistically significantly reduce sudden death mortality, our primary outcome
- The WCD was associated with lower total mortality in the first 90 days post-MI in patients with LVEF ≤35%
- Prescribing the WCD is reasonable to protect high-risk patients with a low LVEF post-MI until evaluation for an ICD at 40-90 days

Thank you: VEST Investigators

Jeffrey Olgin UCSF

Mark Pletcher UCSF

Eric Vittinghoff UCSF

Jerzy Wranicz Medical Univ Lodz

Rajesh Malik McLeod Regional

Daniel Morin Ochsner

Steven Zweibel Univ of CT

• Alred Buxton Beth Israel

Claude S Elayi Univ of KY

Eugene Chung Univ of MI

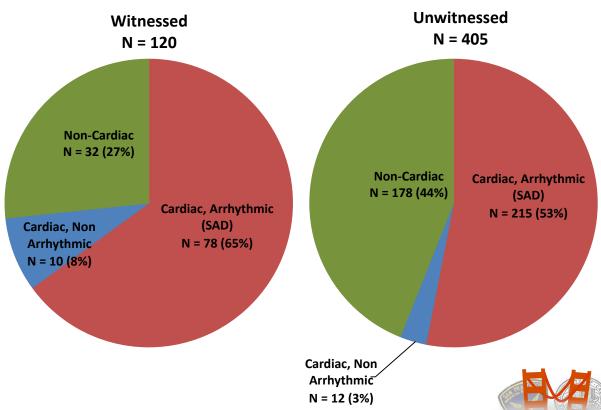
• Eric Rashba Stoney Brook

Martin Borggrefe Univ Mannheim

Stephen Hulley UCSF

Byron Lee UCSF

On Behalf of the VEST Investigators

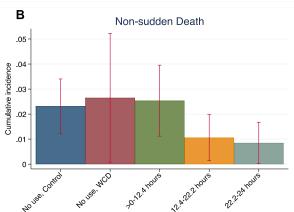


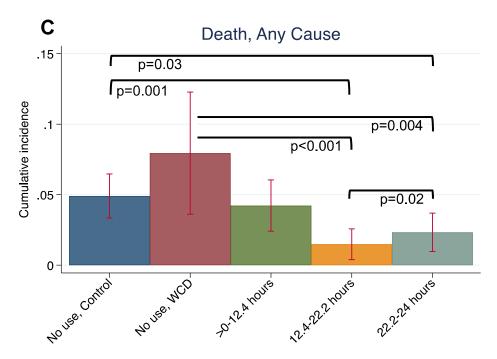
Thank you

Discussion: Sudden death etiology

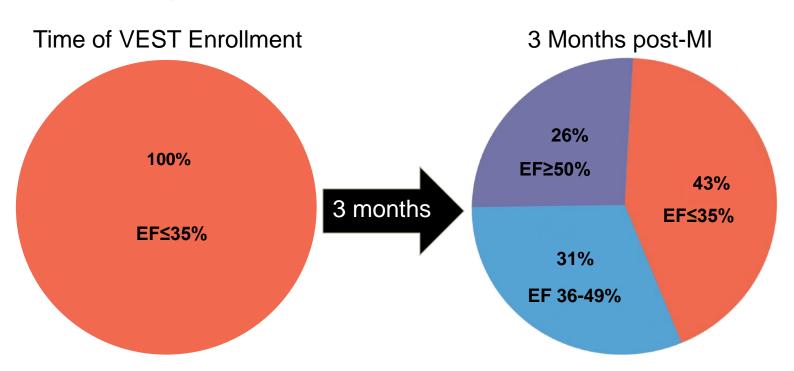
- Autopsy-proven cause of death
- 525 consecutive "sudden deaths" in SF County
- •98% autopsy rate.

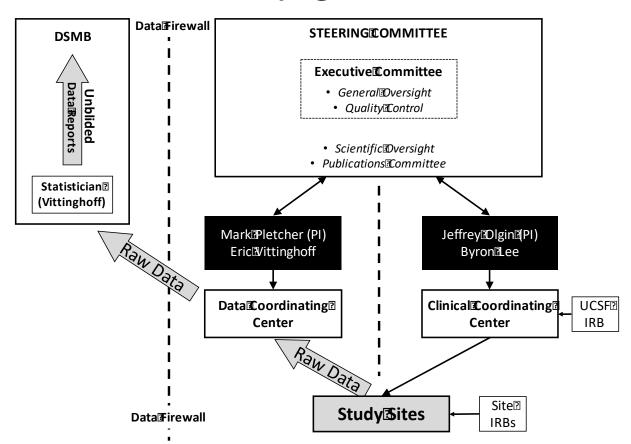
Tseng, Z. et al Circulation, in press

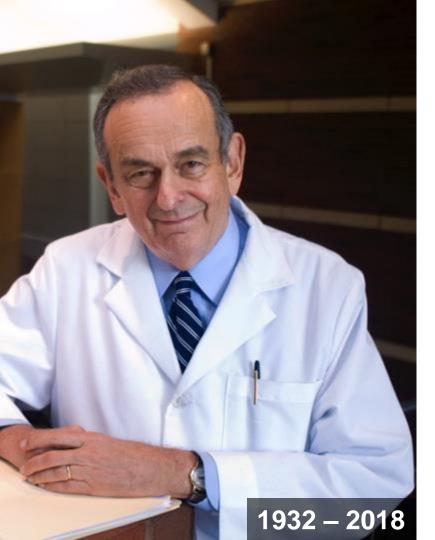

Results: ICD implants


	WCD (n=67)	Control (n=44)
TIMING OF ICD IMPLANT:	` '	
Days since randomization, med (IQR)	62 (24-81)	58 (25-77)
REASON FOR EARLY ICD IMPLANT:		
Cardiac arrest/WCD shock	15	6
Sustained VT	4	1
Bradycardia	0	1
HF treatment (required CRT)	5	1
Syncope and inducible VT	0	1
Protocol violation	24	18
Unknown reason	19	16

Results: Outcomes, as-treated




Background: EF improves over time



Methods: Study governance & oversight

MADIT

Multicenter Automatic Defibrillator Implantation Trials

Improved Survival with an Implanted Defibrillator in Patients with Coronary Disease at High Risk for Ventricular Arrhythmia

Arthur J. Moss, M.D., W. Jackson Hall, Ph.D., David S. Cannom, M.D., James P. Daubert, M.D., Steven L. Higgins, M.D., Helmut Klein, M.D., Joseph H. Levine, M.D., Sanjeev Saksena, M.D., Albert L. Waldo, M.D., David Wilber, M.D., Mary W. Brown, M.S., and Moonseong Heo, Ph.D. for the Multicenter Automatic Defibrillator Implantation Trial Investigators*

Prophylactic Implantation of a Defibrillator in Patients with Myocardial Infarction and Reduced Ejection Fraction

Arthur J. Moss, M.D., Wojciech Zareba, M.D., Ph.D., W. Jackson Hall, Ph.D., Helmut Klein, M.D., David J. Wilber, M.D., David S. Cannom, M.D., James P. Daubert, M.D., Steven L. Higgins, M.D., Mary W. Brown, M.S., and Mark L. Andrews, B.B.S. for the Multicenter Automatic Defibrillator Implantation Trial II Investigators*

Cardiac-Resynchronization Therapy for the Prevention of Heart-Failure Events

Arthur J. Moss, M.D., W. Jackson Hall, Ph.D., David S. Cannom, M.D., Helmut Klein, M.D., Mary W. Brown, M.S., James P. Daubert, M.D., N.A. Mark Estes, III, M.D., Elyse Foster, M.D., Henry Greenberg, M.D., Steven L. Higgins, M.D., Marc A. Pfeffer, M.D., Ph.D., Scott D. Solomon, M.D., David Wilber, M.D., and Wojciech Zareba, M.D., Ph.D. for the MADIT-CRT Trial Investigators*

Reduction in Inappropriate Therapy and Mortality through ICD Programming

Arthur J. Moss, M.D., Claudio Schuger, M.D., Christopher A. Beck, Ph.D., Mary W. Brown, M.S., David S. Cannom, M.D., James P. Daubert, M.D., N.A. Mark Estes, III, M.D., Henry Greenberg, M.D., W. Jackson Hall, Ph.D., David T. Huang, M.D., Josef Kautzner, M.D., Ph.D., Helmut Klein, M.D., Scott McNitt, M.S., Brian Olshansky, M.D., Morio Shoda, M.D., David Wilber, M.D., and Wojciech Zareba, M.D., Ph.D. for the MADIT-RIT Trial Investigators*