COVID-19, Clots and Anticoagulants: A Case-based Discussion on VTE Prevention and Treatment
Speakers

Geoffrey D. Barnes, MD, MSc, FACC
Assistant Professor of Internal Medicine, University of Michigan
Ann Arbor, MI

Adam Cuker, MD, MS
Associate Professor of Medicine, Pathology & Laboratory Medicine, University of Pennsylvania
Philadelphia, PA

Gregory Piazza, MD, FACC
Assistant Professor of Medicine, Harvard Medical School and Brigham and Women's Hospital
Boston

Deborah Michelle Siegal, MD
Assistant Professor, Division of Hematology and Thromboembolism, McMaster University
Hamilton, Ontario

Barbara S. Wiggins, PharmD, FACC
Professor, College of Pharmacy, Medical University of South Carolina
Charleston, SC
Case

- 49 yo man admitted after 5 days of fever, progressive SOB

- PMH: obesity (BMI 38), DM2 on insulin, and mild CKD (stage 2)

- ED: HR 98, SBP 134/88, RR 24, SpO2 84% on RA → 94% on 2L

- No leg swelling

- D-dimer 8.4 (nl<0.50)

- CXR: Bilateral patchy infiltrates

- PECT: no PE, bilateral ground glass opacities and consolidation (RLL, LUL)

- Admit to the general medicine wards
Discussion

• What contributes to VTE risk?
• On what type of unit should this patient be managed and why?
D-dimer and COVID-19 Mortality

Overall Mortality - China

Day after admission

Non-survivors

Survivors

D-dimer and PE - France

<table>
<thead>
<tr>
<th>D-dimer and PE - France</th>
<th>PE Present (n=32)</th>
<th>PE Absent (n=74)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated D-dimer (>0.5)</td>
<td>28 (88%)</td>
<td>50 (68%)</td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>15.4 ± 14.4</td>
<td>1.9 ± 3.1</td>
<td>0.001</td>
</tr>
<tr>
<td><5</td>
<td>5 (18%)</td>
<td>39 (78%)</td>
<td></td>
</tr>
<tr>
<td>5-20</td>
<td>12 (43%)</td>
<td>9 (18%)</td>
<td></td>
</tr>
<tr>
<td>>20</td>
<td>11 (39%)</td>
<td>2 (4%)</td>
<td></td>
</tr>
</tbody>
</table>

Tang N et al JTH 2020;18:844-847

Leonard-Lorant I et al Radiology 2020 ePub Apr 24
D-dimer and COVID-19 Mortality

VTE Risk Factors - Netherlands

<table>
<thead>
<tr>
<th></th>
<th>VTE (n=39)</th>
<th>No VTE (n=159)</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD)</td>
<td>62 (10)</td>
<td>60 (15)</td>
<td>1.05 (0.82-1.4)</td>
</tr>
<tr>
<td>ICU</td>
<td>35 (89%)</td>
<td>40 (25%)</td>
<td>8.9 (3.2-25)</td>
</tr>
<tr>
<td>Median D-dimer (IQR)</td>
<td>2.6 (1.1-18)</td>
<td>1.0 (0.7-1.7)</td>
<td>1.4 (1.1-1.9)</td>
</tr>
</tbody>
</table>

Cumulative Incidence of VTE

Middledorp S et al JTH 2020 ePUb May 6
Mechanism of COVID-19 Thrombosis
Discussion

• What VTE prophylaxis would you use?
What dose of anticoagulation?

HR 0.86 (0.82-0.89)

- NYC Hospital System
- 2733 hospitalized patients with COVID-19
- Compare in-hospital treatment-dose anticoag vs. none

DOI: 10.1016/j.jacc.2020.05.001
Benefit of Therapeutic Anticoagulation?

- Same NYC Hospital System
- 3772 hospitalized patients with COVID-19
- Compare pre-hospital anticoag vs. no anticoag

Tremblay D et al Blood 2020 ePub May 27, DOI: 10.1182/blood.2020006941
What dose of anticoagulation?

<table>
<thead>
<tr>
<th>Patient with COVID-19</th>
<th>Standard Dose VTE Prophylaxis</th>
<th>Intermediate or Escalated Dose VTE Prophylaxis</th>
<th>Therapeutic Anticoagulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatients</td>
<td>Consider if high-risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor patients</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU Patients</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ARDS Patients</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Confirmed VTE</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Suspected PE</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

How best to address bleeding risk?
Case

• On hospital day 4, his O2 requirement rapidly increases to 6L
• He is transferred to ICU for heated high-flow O2
• He develops acute on chronic renal insufficiency
 • Cr 2.2, CrCl <30ml/min

• Do you change his VTE prophylaxis regimen?
Case

- After 3 days in the ICU, his O2 requirements improve, no longer febrile
 - He transfers to the floor for continued O2 weaning
 - Renal function improving (Cr 1.7)

- He is eventually discharged home on hospital day 10 (symptom day 15)
 - Still requiring 0.5-1L NC
 - Back to baseline renal function (Cr 1.3)
 - D-dimer 2.5 (nl <0.5)

- Do you consider post-hospital VTE prophylaxis?
Risk of post-hospital VTE

<table>
<thead>
<tr>
<th>medication</th>
<th>VTE Events</th>
<th>Major Bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivaroxaban 10mg daily</td>
<td>4.4%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Enoxaparin 40mg daily</td>
<td>5.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Betrixaban 80mg daily</td>
<td>5.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Enoxaparin 40mg daily</td>
<td>7.0%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

DOI 10.1002/jhm.1002
NEJM 2013;368:513-523
NEJM 2016;375:534-544
Case – What if?

• Upon admission to ICU, DVT scan performed
 • Acute DVT in left iliofemoral vein
• Reminder: Cr 2.2, CrCl <30ml/min

• What anticoagulation regimen?
• How long to treat?
Take-home Points

• Key risk factors for VTE include COVID-19
• Stick to evidence-based prophylaxis unless in a clinical trial
 • Consider intermediate-dose or escalated prophylaxis for sicker patients
• Consider role of post-hospital VTE prophylaxis
 • Persistent immobilization
 • Ongoing inflammation
 • Prior VTE
• Confirmed of presumed VTE → 3 months of anticoagulation