

AMERICAN
COLLEGE *of*
CARDIOLOGY®

COVID-19

Operationalizing Longitudinal Virtual Care

Recorded on 6/22/2020

AMERICAN
COLLEGE *of*
CARDIOLOGY®

COVID-19

Speakers

Ameya Kulkarni, MD

Mid Atlantic Permanente Medical Group, McLean, VA

Sanjeev P. Bhavnani, MD, FACC

Faculty Cardiologist, Principal Investigator, Healthcare Innovation and Practice Transformation Laboratory, Scripps Clinic & Research Foundation, La Jolla, CA

Erica S. Spatz, MD, MHS, FACC

Associate Professor, Section of Cardiovascular Medicine, Specialty Lead, Yale Medicine Population Health, Center for Outcomes Research and Evaluation, Yale University School of Medicine, New Haven, CT

Presenter Disclosure Information

Ameya Kulkarni, MD

Nothing to disclose

Sanjeev P. Bhavnani, MD

Sanjeev Bhavnani is a scientific advisor to Analytics 4 Life and Blumio; consultant to Bristol Meyers Squibb and Pfizer; data safety monitoring board chair at Proteus Digital; has received research support from Scripps Clinic and the Qualcomm Foundation, and is member of the innovation advisory boards at the American College of Cardiology, American Society of Echocardiography, and BIOCOM (all non-profit institutions with all positions voluntary).

Erica S. Spatz, MD, MHS, FACC

Nothing to disclose

AMERICAN
COLLEGE *of*
CARDIOLOGY®

COVID-19

Making Virtual Care Vital

Sanjeev Bhavnani MD

Division of Cardiology – Healthcare Innovation Laboratory

Scripps Clinic & Research Foundation

@SanjeevBhavnani

1

- Learn about virtual care and digital health transformation

2

- Become familiar with the functionalities of a modern remote monitoring virtual care program

3

- Real world evidence examples of hypertension and arrhythmia monitoring

4

- Leave knowing that virtual care is an integrated model to improve the quality and costs of care

Virtual Care :

“The tools, processes, and procedures allowing organizations to create, manipulate, and manage patients in a individualized approach using new data sets”

Not just devices and technologies ...

Moves from device to data to knowledge and aims to answer clinically meaningful questions leading to improved efficiency and outcomes

Why Virtual Transformation?

The Scope of the Problem

- The average North American above the age of 50 has 2-3 chronic medical conditions
- This population will rise to **100 million** by 2030
- Cost of **> 4 trillion** dollars per year

Smart Ring

Smart Computer

Smartphone Exam

Smart Pills

Smart Necklace

Smartphone
Lab Testing

Smart Skin

Smartphone
Ultrasound

Smart Clothing

Smartphone ECG

Blood Pressure

Glucose

Smart Genome Sequencing

SmartWatch

Health Technology Assessment

Device Usability → User Factors → Clinical Integration

HTA stakeholders: physicians, non-MD, administration, data science, informatics, business development, patient & caregiver

From Technology → Data → Knowledge

Motivating Example: *Virtual Care - Remote Patient Monitoring*

CPT 99091

Quality of Care

These Are Not Our Patients ...

Our Patients are More Like This ...

- ✓ Clinical workflows
- ✓ EMR Integration
- ✓ Clinical Decision Support
- ✓ Precision Medicine
- ✓ Population Medicine
- ✓ Informatics
- ✓ Regulation
- ✓ Reimbursement

Digital Doctors

- ✓ Device Designs
- ✓ Apps
- ✓ Wearables
- ✓ Wireless Devices
- ✓ Sensors

Digital Devices

- ✓ Robotics
- ✓ Implantables
- ✓ Handheld Imaging
- ✓ Interoperability

- ✓ Patient Generated Health Data
- ✓ Digital Literacy
- ✓ Digital Engagement
- ✓ Digital Retention

Digital Patients

- ✓ Social Media
- ✓ Senior Care
- ✓ Caregiver Engagement

CPT 99091

Quality of Care

	CPT Code	Description
	99091	Collection and interpretation of physiologic data (e.g., ECG, blood pressure, glucose monitoring) digitally stored and/or transmitted by the patient and/or caregiver to the physician or other qualified health care professional, qualified by education, training, licensure/regulation (when applicable) requiring a minimum of 30 minutes of time, each 30 days

This is one of several RPM CPT codes

99091 - Patient Onboarding

99091 – EPIC MyChart Activation

CPT 99091

Quality of Care

Flowsheet Report

Time	4/19/2018	4/20/2018	4/21/2018	4/22/2018	4/23/2018	4/25/2018	4/26/2018	4/28/2018	4/29/2018	4/30/2018	5/1/2018	5/2/2018	5/3/2018	5/4/2018	5/5/2018	5/7/2018
Systolic	138	125	128	125	117	114	123	127	124	117	133	126	124	120	115	115
Diastolic	83	76	79	74	69	76	77	73	78	72	79	80	81	70	68	67

Flowsheet Data

Hospital – Pneumonia and hypertension

Post
Hospital
Stay
(Acute)

✗ Systolic (x100)

BP 130

BP 160

Forgot Meds

BP 125

85 YEAR OLD WOMAN
Hypertension, HFrEF
Renal Failure

All Care Virtual

△ Diastolic (x100)

180

150

120

90

70

69 YEAR OLD MAN

Paroxysmal AF, Ischemic Heart Disease

All Care Virtual

Normal Rhythm

Normal Rhythm

45 YEAR OLD WOMAN
Palpitation Monitoring

All ECGs normal over
12 months

All Care Virtual
Did not require MCT, Holter Monitoring Devices

CPT 99091

Quality of Care

Collection & interpretation of digitally stored and transmitted patient generated physiologic data

Summary review of physiologic data

Plan

Total time spent in review of patient generated data of 30 minutes

Monitoring vital metrics (BP control, HF symptoms and QoL), costs of care, ongoing patient engagement

CPT 99091

Quality of Care

Input

Heterogeneous biomedical, clinical, or healthcare data

Output

EHR-agnostic visualization

Badgeley M. EHDViz: BMJ OPEN 2016
Miotto R. Deep Patient: Nature 2016

CPT 99091

Quality of Care

Welcome back,
User

EMR Data

- Blood_Pressure
- Respiratory_Rate
- Heart_Rate
- Weight
- Cholesterol
- HDL
- LDL
- Blood_glucose

1

Fitbit Data

- steps
- distance
- activeminutes
- floors
- caloriesburned

2

Personal
Logs

- Weight
- Blood_Pressure

Data Updated every 60
seconds

3

4

CPT 99091

Quality of Care

1

- Learn about virtual care and digital health transformation

2

- Become familiar with the functionalities of a modern remote monitoring virtual care program

3

- Real world evidence examples of hypertension and arrhythmia monitoring

4

- Leave knowing that virtual care is an integrated model to improve the quality and costs of care

Panel Discussion

Moderator: Ameya Kulkarni, MD

- **Sanjeev P. Bhavnani, MD**
- **Erica S. Spatz, MD, MHS, FACC**

AMERICAN
COLLEGE *of*
CARDIOLOGY®

COVID-19

Telemedicine to Enhance Cardiovascular Care

Erica S. Spatz, MD, MHS

Associate Professor, Section of Cardiovascular Medicine

Yale School of Medicine

June 22, 2020

AMERICAN
COLLEGE *of*
CARDIOLOGY®

COVID-19 Hub

No disclosures.

Telemedicine: Potential to optimize ambulatory care and reduce health disparities

- Improve patient-centered care
- Enhanced disease management
- Elimination of health disparities

*Opportunity to reimagine high-value ambulatory care

Telehealth Overview: Integration across HealthCare

Tele-ICU

Remotely and continuously monitor patients in the ICU, augmenting bedside clinical insight and care
InSight Tele-ICU

Tele-Stroke

Enhance and enable stroke diagnosis by virtually connecting patients and bedside providers with board-certified neurologists

Acute Care (Hospital) at Home

Manage post discharge and critically and chronically ill patients from home utilizing audio/visual and peripheral devices

EHR Identification and Virtual Management

Identify patients not meeting guideline directed therapy, or in need of care management or further support for functional ability and return to work

Tele- and Asynchronous Specialty Consults

Leverage expert specialty services to triage, assess, and support System and non-System clinicians
eConsults – outpatient and inpatient

Video Visits

Urgent care and specialty appointments via audio/visual devices, replacing the need for in-person appointments

Condition Management

Coordinate health interventions for high-risk members with CHF, COPD, asthma, diabetes, high-risk maternity and mental health issues

Remote Monitoring/Wellness Support

Engage and empower members management of their health through connected medical devices, and mHealth modalities

Telehealth Overview: Integration across HealthCare

Tele-ICU

Remotely and continuously monitor patients in the ICU, augmenting bedside clinical insight and care
InSight Tele-ICU

Tele-Stroke

Enhance and enable stroke diagnosis by virtually connecting patients and bedside providers with board-certified neurologists

Acute Care (Hospital) at Home

Manage post discharge and critically and chronically ill patients from home utilizing audio/visual and peripheral devices

EHR Identification and Phenotyping

Identify patients not meeting guideline directed therapy, or in need of care management or further support for functional ability and return to work

Tele- and Asynchronous Specialty Consults

Leverage expert specialty services to triage, assess, and support System and non-System clinicians
eConsults – outpatient and inpatient

Video Visits

Urgent care and specialty appointments via audio/visual devices, replacing the need for in-person appointments

Condition Management

Coordinate health interventions for high-risk members with CHF, COPD, asthma, diabetes, high-risk maternity and mental health issues

Remote Monitoring/Wellness Support

Engage and empower members management of their health through connected medical devices, and mHealth modalities

Hurdles to telemedicine

- Lack of business model: ↓ reimbursement
- IT investment
- Clinician buy-in and training
- Patient capacity – tech access and literacy
- Support staff

COVID: a disaster of Titanic proportions

- Within days/weeks, incumbent to turn this ship
- Defer visits vs convert to telemedicine

Encounter trends during COVID

Cardiovascular Medicine

Month	# Telehealth	In Person	% of Telehealth
March	1246	1869	40.0%
April	3398	245	93.3%
May	1956	231	89.4%

AMERICAN
COLLEGE *of*
CARDIOLOGY®

COVID-19 Hub

What about for vulnerable populations?

Study of digital uptake in low-income population

AIMS:

- Assess barriers (implementation; attitudes/beliefs) in the uptake of MyChart and a digital health app
- Identify features and adoption supports integral for ensuring success of a digital health intervention
- Assess feasibility and success of a community health worker in supporting digital health uptake

Study Design

- Enrolled 80 English- and 50 Spanish-preferred speaking patients
- CHW assisted with MyChart and Hugo (digital health app) downloads, instruction of features and ongoing support in first month
- Bi-weekly surveys sent to participants for 3 months

Digital Communication Strategy to Support Patients

Implementation barriers

- Phone out of battery
- WiFi connection not strong
- Forgotten passwords – don't know how to access email
- No storage/memory to download platform

Beliefs/Attitudes

	English	Spanish
Interested In:		
Owner of health records	>90%	>95%
View records on phone/device	100%	100%
Interested in participating in research with their phone	88%	>90%
Add'l assistance from community health worker	30%	50%
Concerned about:		
Comfortable sharing data through digital platform	78%	50%
Concerned about privacy	82%	>90%

Learnings

Feature	Implication
Design	Thoughtful design, pilot tests
Implementation	Address structural needs for digital connectivity; SDOH
Adoption	Supports (CHWs)
Value	Patient-reported experiences and outcomes; crossing the digital divide to reduce disparities

Clinical Application

- Cardiology-Pharmacy Blood Pressure Control Program
 - Patients referred to pharmacist for uncontrolled BP
 - Pharmacists assessing CV risk, adherence, implementation barriers
 - Implements remote monitoring of home-blood pressure monitoring
 - Telehealth visits to titrate medications and support lifestyle modifications

Population health-

- Targeting high-risk communities
- Highlighting digital connectivity as a social determinant of health
- Reducing barriers to care

Telemedicine: Opportunity for high-value care

*Business model – reimbursement now at level of in-person visits, but may change in the future

- Improve patient-centered care
- Enhanced disease management
- Elimination of health disparities

Future

- Studies of patient experiences and outcomes
- Identify patients and visit types most appropriate for telemedicine
- Integration of remote monitoring into clinical care
- Re-envision what highly-coordinated, patient-centered ambulatory care looks like 10 years from now

AMERICAN
COLLEGE *of*
CARDIOLOGY®

COVID-19

