CV Virtual Care: Lessons Learned for Chronic Disease Management
Speakers

Nasrien Ibrahim, MD, FACC
Assistant Professor of Medicine, Harvard Medical School; Associate Director, Resynchronization & Advanced Cardiac Therapeutics Program, Boston

Ariane M. Fraiche, MD
Chief Cardiology Fellow, Beth Israel Deaconess Medical Center, Boston

Ian Kronish, MD, MPH
Florence Irving Associate Professor of Medicine; Director, Columbia Roybal Center for Fearless Behavior Change; Associate Director, Center for Behavioral Cardiovascular Health; Co-Director, The Hypertension Center Division of General Medicine, Columbia University Irving Medical Center, New York

Nicole Cyrille-Superville, MD
Atrium Health Heart Failure Clinic, Charlotte, NC
Presenter Disclosure Information

Nicole Cyrille-Superville, MD
Speaker: Pfizer/Tafamidis

Ariane M. Fraiche, MD
Nothing to disclose

Nasrien Ibrahim, MD, FACC
Honoraria: Novartis; Roche Diagnostics

Ian Kronish, MD, MPH
Grant Funding: AHRQ; NIH
Why Chronic Cardiovascular Disease is the Ideal Case for Virtual Care

Ariane CoCo Fraiche, MD
Chief Cardiology Fellow
Beth Israel Deaconess Medical Center
Boston, Massachusetts
afraiche@bidmc.harvard.edu
Objectives

- Describe how patients with cardiovascular disease are at increased risk of adverse outcomes in the COVID-19 era
- Introduce preexisting telehealth practices in cardiovascular disease management
- Highlight current impetuses for implementing virtual care in cardiovascular disease management
- Advocate for on-going virtual care for cardiovascular patients considering the benefits and limitations
Keeping our patients safe

• Patients with pre-existing cardiovascular disease are vulnerable to COVID-19 infection and adverse outcomes
• SARS-CoV-2 virus is associated with cardiovascular injury and mortality
• Social distancing efforts and stay-at-home orders limit typical in-person clinical care strategies
• Negative impact of COVID-19 pandemic on cardiovascular patients may include delays in presentation and treatment for acute cardiovascular conditions
Why Chronic Cardiovascular Disease is the Ideal Case for Virtual Care

TABLE 1 Relative Frequency of CV Risk Factors or Underlying CV Conditions in Available COVID-19 Cohorts and Representative Parent Populations

<table>
<thead>
<tr>
<th>First Author, Year (Ref. #)</th>
<th>CVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guan et al. 2020 (29) (N = 1,099)</td>
<td>–</td>
</tr>
<tr>
<td>Zhou et al. 2020 (6) (N = 191)</td>
<td>–</td>
</tr>
<tr>
<td>Wang et al. 2020 (20) (N = 138)</td>
<td>20 (14.5)</td>
</tr>
<tr>
<td>Huang et al. 2020 (1) (N = 41)</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Ruan et al. 2020 (22) (N = 150)</td>
<td>13 (8.7)</td>
</tr>
<tr>
<td>Wu et al. 2020 (28) (N = 201)</td>
<td>8 (4.0)</td>
</tr>
<tr>
<td>Wu et al. 2020 (16)* (N = 44,672)</td>
<td>4,690 (10.5)†</td>
</tr>
<tr>
<td>Fang et al. 2020 (100)* (N = 2,818)</td>
<td>233 (8.3)†</td>
</tr>
<tr>
<td>Lu et al. 2018 (101)$ (N = 12,654)</td>
<td>1,455 (11.5)</td>
</tr>
</tbody>
</table>

Values are n (%). To date, no publications have described these statistics for COVID-19 patients from other areas including South Korea, Iran, Italy, Spain, and others. Therefore, the comparator parent population was chosen from China. *These studies by Wu et al. (16) and Fang et al. (98) include a large, population-based dataset and a systematic review, respectively, from China that are inclusive of the other displayed cohort studies. †Composite of CVD and cerebrovascular disease. $Chinese population prior to COVID-19 included for comparison. Please note that disease ascertainment was different in this study compared with studies of patients with COVID-19.

Why Chronic Cardiovascular Disease is the Ideal Case for Virtual Care

Figure. Potential Mechanisms for Acute Effects of Viral Infections on Cardiovascular System

- Viral infections
 - Direct vascular infection
 - Systemic proinflammatory stimulation (cytokine storm)
 - Hypercoagulability
 - Sympathetic stimulation
 - Acute respiratory distress syndrome and superimposed infection
 - Myocarditis
 - Myocyte necrosis
 - Proinflammatory cytokines
 - Direct myocardial infection
 - Myocarditis
 - Proinflammatory effects
 - Sympathetic stimulation

- Vascular cellular inflammation
- Plaque rupture
- Myocardial oxygen demand
- Myocardial oxygen supply
- Myocardial infarction risk
- Heart failure risk
- Arrhythmias risk
ME AFTER FINISHING ALL THE QUARANTINE SNACKS IN 2 NIGHTS

COVID-19 Hub

Why Chronic Cardiovascular Disease is the Ideal Case for Virtual Care

Patients may not seek care or present late for acute cardiac conditions during the pandemic.
Foundations for Telehealth in Cardiovascular Disease Management

- Telehealth strategies are well-established methods for cardiovascular disease management
 - Remote monitoring of cardiovascular implantable electronic devices (CIEDs)
 - Implantable HF monitoring devices such as CardioMEMS
 - Remote assessments using home blood pressure cuff and scales
 - Wearable biosensors
 - Smartphone applications
 - Telephone-based pharmacist-directed pathways for medication titration
 - Telerehabilitation

Increasingly included as interventions and in outcome assessments

Rapidly evolving technologies and strategies

Federal-level emergency waivers in response to COVID-19

Why Chronic Cardiovascular Disease is the Ideal Case for Virtual Care

Benefits

Table 1. Benefits and Value of Virtual Visits

<table>
<thead>
<tr>
<th>Group</th>
<th>Potential benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>• Provide access
• Receive medical advice
• Reduce in-person exposure to SARS-CoV-2
• Reduce distress
• Involve caregivers</td>
</tr>
<tr>
<td>Clinician</td>
<td>• Serve patients
• Reduce in-person exposure to SARS-CoV-2
• Maintain connection between patient and provider</td>
</tr>
<tr>
<td>Health care systems</td>
<td>• Reallocation resources
• Generate revenue
• Support research efforts</td>
</tr>
</tbody>
</table>

Limitations/Challenges

- Accessibility for vulnerable populations
 - Internet
 - Smartphones/tablets
 - Non-English-speaking patients
- Limited physical exam
- Lack of diagnostic tools

Why Chronic Cardiovascular Disease is the Ideal Case for Virtual Care

Takeaways

- Patients with cardiovascular disease are at increased risk of adverse outcomes in the COVID-19 era warranting enhanced methods to keep them **safe** while supporting chronic management.
- The environment is ripe for putting into practice **established** telemedicine tools in cardiovascular disease management.
- There are **benefits and limitations** of virtual care for cardiovascular patients to acknowledge and confront.
Why Chronic Cardiovascular Disease is the Ideal Case for Virtual Care

Ariane CoCo Fraiche, MD
Chief Cardiology Fellow
Beth Israel Deaconess Medical Center
Boston, Massachusetts
afraiche@bidmc.harvard.edu
Hypertension Management Using Remote Patient Monitoring

Ian Kronish, MD, MPH
Co-Director, The Hypertension Center at Columbia University
What is Remote Patient Monitoring?

- Method of health care delivery that uses technology (e.g., wireless home BP device) to gather information outside of usual healthcare settings
Why Remote Patient Monitoring for Hypertension?
Reason #1: Limitations of usual office BP management

1. Inaccurate office measurement
 • Measurement error
 • Office setting ≠ real world
 • Home BP better predicts CVD events

2. Clinical inertia
 • Remote monitoring provides more opportunities to titrate medications

3. Does not engage patient

Pickering et al. *Hypertension*. 2005
Reason #2: Facilitates telemedicine

All Specialties

University of California, San Diego Daily Ambulatory Visits during COVID surge; This Week at UC San Diego, May 21, 2020
Reason #3: Increase the uptake of evidence-based supported SMBP

<table>
<thead>
<tr>
<th>Study</th>
<th>Telemetry</th>
<th>Phone</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeleBP</td>
<td>179</td>
<td>57</td>
<td>122</td>
</tr>
<tr>
<td>Kerry et al.,</td>
<td>334</td>
<td>167</td>
<td>167</td>
</tr>
<tr>
<td>eBP - Con vs. Int 1</td>
<td>493</td>
<td>247</td>
<td>246</td>
</tr>
<tr>
<td>Wakefield - Con vs. Int 1</td>
<td>183</td>
<td>102</td>
<td>81</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1189</td>
<td>573</td>
<td>616</td>
</tr>
<tr>
<td>(I-squared = 0.0%, p = 0.687)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Self-monitoring with web/phone feedback & education</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASMINH</td>
<td>480</td>
</tr>
<tr>
<td>TASMINH-SR</td>
<td>450</td>
</tr>
<tr>
<td>CAATCH</td>
<td>691</td>
</tr>
<tr>
<td>Leva et al.,</td>
<td>214</td>
</tr>
<tr>
<td>HINTS - Con vs. Int 1</td>
<td>264</td>
</tr>
<tr>
<td>Wakefield - Con vs. Int 2</td>
<td>180</td>
</tr>
<tr>
<td>Subtotal</td>
<td>2279</td>
</tr>
<tr>
<td>(I-squared = 69.3%, p = 0.006)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Self-monitoring with counselling/telecounselling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperlink</td>
<td>388</td>
</tr>
<tr>
<td>TCYB - Con vs. Int 2</td>
<td>238</td>
</tr>
<tr>
<td>HINTS - Con vs. Int 2</td>
<td>269</td>
</tr>
<tr>
<td>HINTS - Con vs. Int 3</td>
<td>264</td>
</tr>
<tr>
<td>eBP - Con vs. Int 2</td>
<td>484</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1506</td>
</tr>
<tr>
<td>(I-squared = 68.2%, p = 0.014)</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity between groups: P<0.001
Overall: 6300 | 2807 | 3493
(I-squared = 76.2%, P<0.001)
SMBP, without support, does not lower BP

Tucker et al. *PLOS Med.* 2017
Reason #4: Potentially reimbursable

- **CPT 99473**: for visits that include training in HBPM, device set-up, and accuracy check for home BP devices (Jan 1, 2020)

- **CPT 99474**: can be charged monthly, when patient reports home BP readings, electronically or using BP log (Jan 1, 2020)

- Home BP data can be used in some **hypertension quality metrics** if data wirelessly entered into electronic health record

- Can incorporate into **billable telemedicine visits**
RPM for Hypertension Example
(Philips Healthcare/Columbia/NYP collaboration)

Patient with uncontrolled hypertension ➔ Clinician refers patient for Telemonitoring ➔ Devices: Home BP monitor and Tablet (Bluetooth enabled) ➔ Video chat Reminders Surveys ➔ Database: Cloud-based (eCC) ➔ CareNet (Telehealth Nurses): Patient training, monitoring and support ➔ Clinician: Patient monitoring and medication adjustment
Case Study

76 year old man with HTN, BPH, mild OA, still working as a superintendent

BP meds:
- lisinopril 40mg, chlorthalidone 25mg, amlodipine 10mg

Today’s BP: 163/106 mmHg
Last visit BP: 148/87 mmHg
Case Study

Started program

Added aldactone
Preliminary results (Fall 2019)
4 providers, 32 patients with uncontrolled BP after 1 week

Goal <140/90 mmHg

% Controlled (140/90 mmHg)

- 4+ Weeks: 58%
- 8+ Weeks: 62%
- 12+ Weeks: 69%

Change in SBP: -10±15 mmHg, p=.01
Change in DBP: -5 ± 9 mmHg, p=.03

• Average number of BP readings/week = 10!
Patient satisfaction (N=12)

• 12 of 12 “very likely” (67%) or “likely” (33%) to recommend program to others

• 4.7 out of 5 = average overall rating (1-worst to 5-best)

• 10 of 11 “always” found devices easy to use

• Telehealth nurses were rated highly
Provider Satisfaction

• Success stories
• But also increased workload
 • Time to review weekly BP data report (even when no upcoming visit)
 • Phone calls to patients to titrate medication between visits
 • Phone calls from nurses for “escalations”
Health system satisfaction

- ? Impact on quality metrics/patient satisfaction
- ? Cost-effectiveness from health system perspective
- ? Impact on uptake of telemedicine
Key steps to designing a hypertension RPM program

• Understand incentives for providers, patients, and health system
• Identify partners to support patients and clinicians (e.g., nurses, pharmacists)
• Select vendors/devices
• Identify platform for storing and visualizing BP data
• Create/refine protocol
Heart Failure Management Systems in Virtual Care

Nicole Cyrille-Superville, MD
June 18th 2020
Disclosures

• Speaker for Tafamidis on behalf of Pfizer
HEART FAILURE B.C

• Healthcare Burden
 • An estimated 5.8 million Americans over the age of 20 carried a diagnosis of HF in 2012, with a projected increase to >8 million by 2030.
 • $30.7 billion was spent on direct and indirect costs of HF in 2012

• Tools utilized in Telemedicine
 • Structured phone visits especially post hospital discharge
 • Electronic transfer of physiological data – ECG, blood pressure, heart rate, weight, and medicine administration
 • Remote monitoring devices such as CardioMEMS
Virtual care B.C

• The US Department of Veterans Affairs (VA)
 • > 99,000 veterans used the VA Video Connect app at home in 2019, resulting in 294,000 virtual appointments predominantly for mental health

• Virtual Visits in Heart Failure Care Transitions; NCT03675828; Late Breaking Clinical Trial presentation at the Heart Failure of Society of America's Annual Scientific Meeting 2019 in Philadelphia, PA)
 • Randomized clinical trial inclusive of 108 HF patients assigned to virtual visits vs in-person ambulatory visits in the post discharge care of patients with HF
 • The no-show rate in the virtual arm trended lower than the observed rate in the in-person arm (VV 34.6% vs in-person arm 50%; RR 0.69; 95% CI 0.44–1.09; P = 0.12) without any signal of harm.
 • No significant differences in hospital readmissions, emergency department visits or death
Challenges to Virtual B.C

- Lack of familiarity with the technologies
- Concern regarding potential harm substituting in-person visits with virtual
- Integration into established workflows
- Legal barriers
- Limited Reimbursement
Telehealth-related Policy Changes in the Era of COVID-19

<table>
<thead>
<tr>
<th>Topic</th>
<th>Key policy changes: COVID-19 pandemic</th>
<th>Implications for virtual visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licensing</td>
<td>HHS waived requirement for health care professionals to hold license in state in which they provide</td>
<td>Potentially allows practice of medicine via virtual visits across state lines.</td>
</tr>
<tr>
<td></td>
<td>services if they have an equivalent license from another state. HHS asked states to waive local licensing requirements, with final decision made at state level.</td>
<td>allows use of virtual visit platforms previously deemed not HIPAA-compliant.</td>
</tr>
<tr>
<td>Privacy</td>
<td>HHS suspended HIPAA rules.</td>
<td>Allows clinicians to be reimbursed for telehealth services regardless of patients’ locations.</td>
</tr>
<tr>
<td>Location of patient</td>
<td>CMS waived rural and site limitations for telehealth interactions.</td>
<td>Clinicians can see new patients by telehealth.</td>
</tr>
<tr>
<td>Prior existing relationship</td>
<td>CMS waived requirement that telehealth services can be provided only to a clinician's established patients.</td>
<td>Clinicians can prescribe controlled-substances in setting of a virtual visit.</td>
</tr>
<tr>
<td>Prescription</td>
<td>DEA relaxed rules related to prescription of controlled substances by telehealth.</td>
<td></td>
</tr>
</tbody>
</table>

CMS, Centers for Medicare & Medicaid Services; DEA, Drug Enforcement Administration; HHS, US Department of Health & Human Services; HIPAA, Health Insurance Portability and Accountability Act.
Billing Codes for Virtual Visits (Also Called “Telehealth visits” by the Centers for Medicare & Medicaid Services)

<table>
<thead>
<tr>
<th>Description</th>
<th>Code and Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office or other outpatient visit for the evaluation and management of a new patient</td>
<td>CPT Code 99201-99205*</td>
</tr>
<tr>
<td></td>
<td>Place of service 02 for Telehealth (Medicare), or,</td>
</tr>
<tr>
<td></td>
<td>Modifier GT (Medicare/Medicaid)</td>
</tr>
<tr>
<td></td>
<td>Modifier 95 (Commercial payers)</td>
</tr>
<tr>
<td>Office or other outpatient visit for the evaluation and management of an established patient</td>
<td>CPT Code 99211–99215*</td>
</tr>
<tr>
<td></td>
<td>Place of service 02 for Telehealth (Medicare) or</td>
</tr>
<tr>
<td></td>
<td>Modifier GT (Medicare/Medicaid)</td>
</tr>
<tr>
<td></td>
<td>Modifier 95 (Commercial payers)</td>
</tr>
<tr>
<td>Telehealth consultations, emergency department or initial inpatient</td>
<td>G0425–G0427</td>
</tr>
<tr>
<td>Follow-up inpatient telehealth consultations furnished to beneficiaries in hospitals or skilled nursing facilities</td>
<td>G0406–G0408</td>
</tr>
</tbody>
</table>

*Choice of Current Procedural Terminology (CPT) code depends on whether the provider elects to use time-based coding vs component-based coding. For example, a provider using time-based coding for a Medicare beneficiary seen by VV for 15 minutes would document the time spent in the note and then may choose CPT code 99213 with modifier GT, if otherwise appropriate for that encounter.
Patients across the spectrum are triaged.

Variety of care providers including physicians, advanced practice providers and licensed social workers are included in care.

Components of the Virtual Visit
- medication reconciliation
- routine history
- patient-reported vital signs
- Abbreviated physical exam
- Medical assessment

Virtual Visit Platforms Used During COVID-19 Public Health Emergency

<table>
<thead>
<tr>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer apps</td>
<td>• Popular applications that allow video chats</td>
</tr>
<tr>
<td>Apple FaceTime</td>
<td>• Allowed during COVID-19 crisis, but less secure</td>
</tr>
<tr>
<td>Facebook</td>
<td>• Providers are encouraged to notify patients that these third-party</td>
</tr>
<tr>
<td>Messenger video chat</td>
<td>• Providers should enable all available encryption and privacy modes</td>
</tr>
<tr>
<td>Google Hangouts video</td>
<td>• when using</td>
</tr>
<tr>
<td>Zoom</td>
<td>• Use may expose provider's personal information (E-mail account,</td>
</tr>
<tr>
<td>Skype</td>
<td>• telephone number, etc.)</td>
</tr>
<tr>
<td>Specialized technology</td>
<td>• Partial list of HIPAA compliant technology platforms</td>
</tr>
<tr>
<td>platforms</td>
<td>• Under normal conditions HIPAA business associate agreements for</td>
</tr>
<tr>
<td>Skype for Business/Microsoft Teams</td>
<td>• provision of telehealth services are required, but this was waived</td>
</tr>
<tr>
<td>Updox</td>
<td>• as part of COVID-19 crisis.</td>
</tr>
<tr>
<td>VSee</td>
<td>• Variability in cost and functionality</td>
</tr>
<tr>
<td>Zoom for Healthcare</td>
<td></td>
</tr>
<tr>
<td>Doxy.me</td>
<td></td>
</tr>
<tr>
<td>Google G Suite</td>
<td></td>
</tr>
<tr>
<td>Hangouts Meet</td>
<td></td>
</tr>
<tr>
<td>Cisco Webex</td>
<td></td>
</tr>
<tr>
<td>Meetings / Webex Teams</td>
<td></td>
</tr>
<tr>
<td>Amazon Chime</td>
<td></td>
</tr>
<tr>
<td>GoToMeeting</td>
<td></td>
</tr>
<tr>
<td>Spruce Health</td>
<td></td>
</tr>
<tr>
<td>Care Messenger</td>
<td></td>
</tr>
<tr>
<td>American Well</td>
<td></td>
</tr>
<tr>
<td>MDLive</td>
<td></td>
</tr>
<tr>
<td>BlueJeans for Healthcare</td>
<td></td>
</tr>
<tr>
<td>Doximity</td>
<td></td>
</tr>
</tbody>
</table>
Pros

• Patient is able to have continued access to care and medical advice
• Provider is able to maintain connection
• Reduce exposure to infection
• Health systems are able to reallocate resources
• Health systems are able to generate revenue

Challenges

• Patient comfort level may vary
• Variable patient geographic and financial challenges
• Technical Difficulties
• Limitations in physical exam
Future of Virtual Visits

• Patients and caregivers may continue to have concerns about in-person office visits/travel and may show preference for virtual visits

• Clinicians may also be more amenable to virtual visits

• Policy and reimbursement changes may remain in place and further evolve to facilitate continued use of virtual visits
• Virtual Platforms allow for continued Patient – Physician Connectivity while limiting the possibility of exposure to both parties

• Incorporation of virtual visits may allow health systems to reallocate resources

• COVID-19 has allowed us to deliver care in our heart failure patients in a different way however the full impact of virtual visits on improving adherence, reducing no-show rates, improving inpatient to outpatient transition, or preventing ER visits/hospital admissions and readmissions for patients with HF is unknown.
References

Panel Discussion

Moderator: Nasrien Ibrahim, MD, FACC

- Ariane M. Fraiche, MD
- Ian Kronish, MD, MPH
- Nicole Cyrille-Superville, MD