Understanding COVID-19
Testing for CV Specialists: Small Words with Big Pictures

July 27, 2020
Speakers

- Edward Fry, MD, FACC, Session Moderator
- Emily Hyle, MD
- Bernard Macatangay, MD
- Steven Woloshin, MD
Presenter Disclosure Information

- Edward Fry, MD, FACC, Session Moderator
 - Nothing to disclose
- Emily Hyle, MD
 - I am a co-author at UpToDate.com on an unrelated topic.
- Bernard Macatangay, MD
 - Nothing to disclose
- Steven Woloshin, MD
 - Nothing to disclose
SARS CO-V BASICS: THE VIRUS AND THE ANTIBODY RESPONSE

Bernard JC Macatangay, MD
Assistant Professor of Medicine and Immunology
Division of Infectious Diseases
University of Pittsburgh School of Medicine
Coronaviruses and SARS CoV-2

- Enveloped RNA viruses
- With spiked glycoprotein embedded in envelope
- Inter- and intra-species transmission plus genetic recombination contribute to emergence of new coronavirus strains

Table 1. Human coronaviruses.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Genus</th>
<th>Disease</th>
<th>Discovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoV-229E</td>
<td>Alpha</td>
<td>Mild respiratory tract infection</td>
<td>1967</td>
</tr>
<tr>
<td>CoV-NL-63</td>
<td>Alpha</td>
<td>Mild respiratory tract infection</td>
<td>1965</td>
</tr>
<tr>
<td>CoV-HKU-1</td>
<td>Beta</td>
<td>Mild respiratory tract infection; pneumonia</td>
<td>2005</td>
</tr>
<tr>
<td>CoV-OC43</td>
<td>Beta</td>
<td>Mild respiratory tract infection</td>
<td>2004</td>
</tr>
<tr>
<td>SARS-CoV</td>
<td>Beta</td>
<td>Human severe acute respiratory syndrome, 10% mortality rate</td>
<td>2003</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>Beta</td>
<td>Human severe acute respiratory syndrome, 37% mortality rate</td>
<td>2012</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Beta</td>
<td>Severe acute respiratory infections, <2% mortality rate</td>
<td>2019</td>
</tr>
</tbody>
</table>
• Although there is a lot of variability in viral shedding, likelihood of recovering replication competent virus declines after onset of symptoms.
• Epidemiologic and virologic evidence support transmission from people who are “pre-symptomatic” and asymptomatic.
• 95% of specimens without replication competent virus 15d after symptom onset.
Immune Response to SARS CoV-2

- Innate immune response (sensing of viral RNA – first line of defense)
- Adaptive/Cellular: T cell response
- Adaptive/Humoral: B cell response → antibodies
Neutralizing Abs recognize epitopes that can eliminate infective virus vs non-neutralizing Abs which binds to the pathogen but does not affect infectivity.
Ab responses in COVID-19

• Ab <40% within 1-week of symptom onset (Zhao et al.)
• Increased to 100% (IgM 94.3%) and (IgG 79.8%) by day 15 (Zhao et al.)
• Median duration of IgM/IgA detection was 5d at 85.4% and 92.7% positive rate
• Median for IgG was 14d at 77.9% positive rate (Guo et al.)
Ab responses in COVID-19

- 100% for IgG within 19d of onset of symptoms
- Seroconversion of IgM and IgG occurred simultaneously or sequentially
- Titers plateaued within 6d of seroconversion
COVID-19

SARS CoV2 and Ab response

Azkur et al. 2020
Allergy
Take Home Points

- Viral shedding occurs prior to onset of symptoms
- Detection of replication competent virus declines with onset with most specimens without replication competent virus by d15 from onset
- Detection of antibodies dependent on timing of specimen collection:
 - Low likelihood of detecting antibodies within 7 days of symptom onset
 - Nearly 100% of cases with detectable Abs after day 15 from symptom onset
Panel Discussion
The Promise and Pitfalls of Antibody Testing for SARS-CoV-2

Emily P. Hyle, MD MSc
Division of Infectious Diseases
Massachusetts General Hospital
Assistant Professor of Medicine
Harvard Medical School
Key Takeaways

• Antibody testing can have a limited role in diagnosis of COVID-19 but should be used with caution

• More data are needed regarding whether detectable antibodies confer immunity to SARS-CoV-2

• Risks of false positive and false negative antibody tests remain unacceptably high for clinical decision-making when seroprevalence is low
Outline

• Antibodies for diagnosis
 • As a marker of recent or past infection

• Antibodies to identify immunity
 • As evidence to change clinical recommendations

• Antibody test characteristics
 • Sensitivity, specificity, population seroprevalence, R_0
Introduction

• SARS-CoV-2 has prompted an unprecedented era of innovation and scale-up of a variety of diagnostic tests

• Accurate and timely diagnosis of COVID-19 is essential to ensure appropriate isolation for patients and targeted use of personal protective equipment for staff and providers

• Antibodies are another tool in the armamentarium; they show promise but have pitfalls
Antibodies for diagnosis
Adapted from Sethuraman et al. JAMA. 2020.
Antibodies for diagnosis

- **Acute COVID-19:**
 - Never useful early in illness
 - If antibody-positive after at least 8d of illness, can suggest COVID-19
 - If antibody-negative, cannot rule out COVID-19

- **Past COVID-19:**
 - Cross-reactivity with other coronaviruses appears to be low
 - Older or immunosuppressed less likely to make detectable antibodies
 - Data available for only 35 days after infection; long-term duration and significance of detectable antibodies remains unknown

Antibodies and immunity
Do positive antibodies = immunity?

- We don’t know for certain
 - Based on other viral diseases, the presence of antibodies likely signals immunity to reinfection

- Many remaining questions
 - Does a certain level of antibodies need to be attained ("titer")?
 - If immune, how long will immunity persist? And can positive antibodies serve as a proxy for immunity over time?
 - If mild disease, will antibodies and immunity wane more rapidly?

Why do we want to know about immunity?

• Safely reduce adherence to social distancing guidelines
 • Wear masks?
 • Travel?
 • Attend in person work?
 • Visit vulnerable family and friends?

• Implications for “immune patients” in healthcare settings
 • Reduce COVID-19 testing?
 • Conserve PPE?

• Consequences are serious for false positive test results
Antibody test characteristics
Test characteristics: the 2x2 table

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Test</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
If +antibodies, will the patient have a + test?

<table>
<thead>
<tr>
<th>Test</th>
<th>SARS-CoV-2 Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>+ TP</td>
</tr>
<tr>
<td>-</td>
<td>- FP</td>
</tr>
<tr>
<td></td>
<td>- FN</td>
</tr>
<tr>
<td></td>
<td>+ TN</td>
</tr>
</tbody>
</table>

Sensitivity
Without antibodies, will the patient have a test?

<table>
<thead>
<tr>
<th>SARS-CoV-2 Antibodies</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>TP</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>FP</td>
</tr>
<tr>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td></td>
<td>TN</td>
</tr>
</tbody>
</table>

Specificity
Current challenges with antibody tests

• A wide range of reported sensitivity and specificity

• Tested mostly among COVID-19 patients confirmed by RT-PCR

• Insufficient testing among non-hospitalized COVID-19 patients (ie, people with less severe disease or who are asymptomatic)

If test+, does the patient have antibodies?

<table>
<thead>
<tr>
<th>SARS-CoV-2 Antibodies</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>TP</td>
</tr>
<tr>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>+</td>
<td>TN</td>
</tr>
<tr>
<td>-</td>
<td>FN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Positive Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>TP</td>
</tr>
<tr>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>+</td>
<td>TN</td>
</tr>
<tr>
<td>-</td>
<td>FP</td>
</tr>
</tbody>
</table>
If test-, does the patient have no antibodies?

<table>
<thead>
<tr>
<th>SARS-CoV-2 Antibodies</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>-</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Negative Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Predictive Value</td>
<td></td>
</tr>
</tbody>
</table>

+ TP (True Positive)
 - FP (False Positive)
 - FN (False Negative)
 - TN (True Negative)
Seroprevalence remains low in the US

Havers et al. JAMA IM. 2020.
If seroprevalence is 5%, then

- True positive
- False negative
- False positive
- True negative

Se: 92%
Sp: 98%

Perfect tests do not exist

- We use imperfect tests all the time in health care
 - Rapid flu tests (sensitivity: 50-70%; specificity: >90%)
 - BNP (sensitivity: >95%; specificity: >98%)

- Let’s not wait for a “perfect” antibody test but rather think critically about the criteria at which the test would be useful
 - Specificity and sensitivity
 - Population seroprevalence
 - R_0 – the average number of transmissions resulting from one infection

Key Takeaways

• Antibody testing can have a limited role in diagnosis of COVID-19 but should be used with caution

• More data are needed regarding whether detectable antibodies confer immunity to SARS-CoV-2

• Risks of false positive and false negative antibody tests remain unacceptably high for clinical decision-making when seroprevalence is low
Acknowledgements

Ingrid Bassett, MD MPH
Andrea Ciaranello, MD MPH
Caitlin Dugdale, MD
Clare Flanagan, MPH
Kenneth Freedberg, MD MSc
Emily Hyle, MD MSc
Pooyan Kazemian, PhD
Elena Losina, PhD
Suzanne McCluskey, MD
Amir Mohareb, MD
Anne Neilan, MD MPH
A. David Paltiel, PhD
Giulia Park
Krishna Reddy, MD MSc
Justine Scott, MPH

Fatma Shebl, MD PhD
Mark Siedner, MD MPH
Rochelle Walensky, MD MPH
Milton Weinstein, PhD

Patients, providers, and staff at Massachusetts General Hospital
If seroprevalence is 20%, then

- True positive
- False negative
- False positive
- True negative

Se: 92%
Sp: 98%
