

Cristina Salvadori Bittar¹, Isabela Bispo Santos da Silva Costa¹, Antonio Fernando Lins de Paiva¹, Cesar Higa Nomura¹, Marcio Sommer Bittencourt¹, Luis Francisco Avila², Ludmila Costa Barberino¹, Thamara Carvalho Morais², Julia Tizue Fukushima¹, Roberto Kalil Filho², Ludhmila Abrahão Hajjar^{1,2}

BACKGROUND

- Cardiovascular complications are among the leading causes of morbidity and mortality in patients undergoing non-cardiac surgery.
- Clinical scores and functional tests are the strategy of choice for evaluating these patients, however over one-third of perioperative MACCE occur in patients with a negative study.
- The coronary computed tomographic angiography (CTCA) and coronary calcium score (CAC) are emerging in this context as important predictor of clinical outcomes.

METHODS

- Prospective observational study, single center: ICESP (Cancer Institute of the State of São Paulo)
- Inclusion criteria**
 - Cancer patients
 - Major surgery: thoracic surgeries and open abdominal surgeries
 - Age above 45 years
 - No current cardiovascular symptoms
 - At least 2 of the following
 - History of peripheral vascular disease
 - Age above 70 years
 - History of stroke or TIA
 - Current or Former smoker
 - History of heart failure
 - Dyslipidemia
 - Diabetes
 - Arterial hypertension
 - Sign the informed consent
- Exclusion criteria**
 - Allergy to iodinated contrast
 - Renal insufficiency with creatinine > 2 mg / dL
 - Previous cardiomyopathy
 - Presence of symptoms compatible with myocardial ischemia or heart failure
 - Clinical indication of functional test or invasive coronary angiography
 - Refusal to participate in the study

Pre operative evaluation
Lipid profile
NT pró BNP
Coronary CT
Electrocardiogram (ECG)

Postoperative evaluation
24h: CKMB, Troponin, ECG
48h: CKMB, Troponin, ECG
After 30 days: evaluation of cardiovascular events

If Coronary CT high-risk coronary artery disease

- stenosis ≥ 50% of the left coronary trunk
- ≥ 70% in three coronary arteries
- ≥ 70% in two arteries, one of them being the anterior descending artery

→ Evaluation by the cardiologist

RESULTS

Figure 1. Flowchart

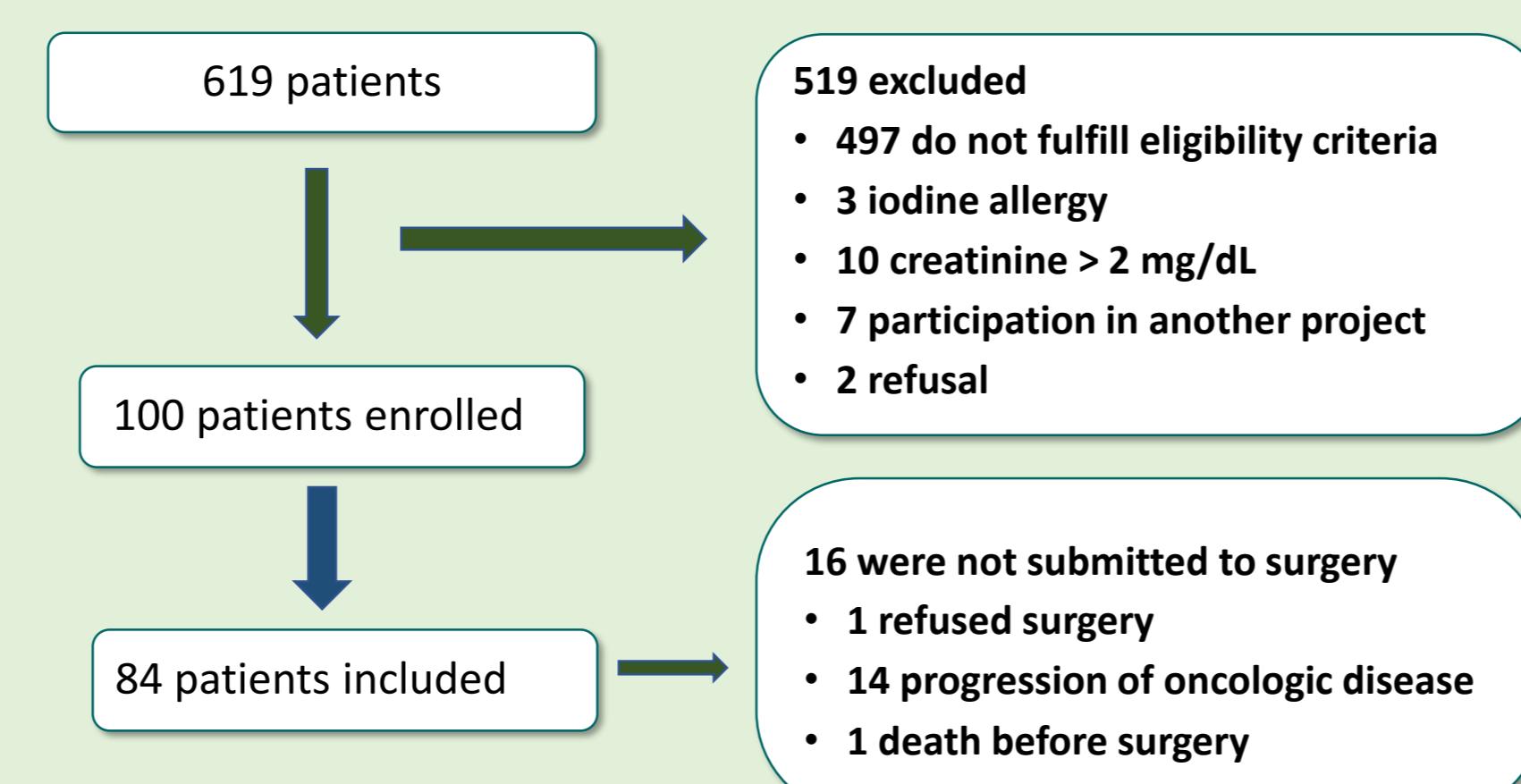
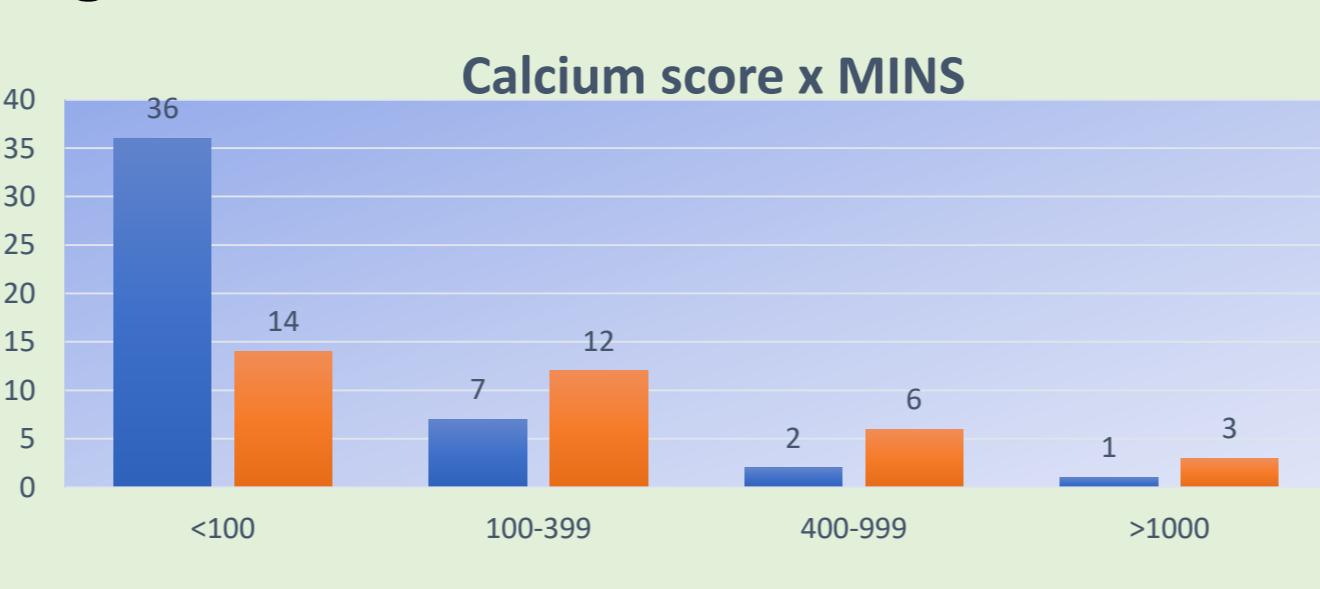


Table 1. Participant baseline characteristics

Characteristics	Myocardial Injury		p	Surgery		
	46 (55%)	38 (45%)		Perineal abdomino amputation	13 (28,3%)	2 (5,3%)
Age, y	64 ± 10	68 ± 8	0,065	Toracic	2 (4,3%)	1 (2,6%)
Male sex	26 (56,5%)	22 (57,9%)	0,899	Colectomy	1 (2,2%)	0 (0%)
Cancer				Esophagogastricectomy	4 (8,7%)	0 (0%)
Bladder	3 (7,1%)	5 (15,2%)		Gastrectomy	1 (2,2%)	14 (39,4%)
Colon	2 (4,8%)	2 (6,1%)		Others	3 (6,5%)	0 (0%)
Esophageal	1 (2,4%)	1 (4,5%)		Return/sigmoidectomy	13 (28,3%)	10 (28,3%)
Stomach	2 (4,8%)	0 (0%)		Return/sigmoidectomy	8 (17,4%)	7 (18,4%)
Pancreas	8 (19%)	0 (0%)		Anesthesia		
Prostate	1 (2,4%)	0 (0%)		General	8 (19,5%)	10 (28,4%)
Lung	2 (4,8%)	1 (3%)		General + epidural	33 (80,5%)	24 (70,6%)
Rectal/Sigmoid	23 (54,8%)	9 (27,3%)	0,499	Vasopressors	8 (19,5%)	18 (48,6%)
Kidney	0 (0%)	1 (3%)		Transfusion	4 (8,7%)	0,016
T				Red blood cells	11 (25,9%)	0,007
T1	5 (11,4%)	2 (5,7%)		No transfusion	43 (93,5%)	
T2	6 (13,6%)	6 (17,1%)			28 (73,7%)	
T3	16 (36,4%)	16 (45,7%)				
T4	12 (27,3%)	5 (14,3%)				
TX	5 (11,4%)	6 (17,1%)				
N			0,387	NTproBNP	155 (31- 233)	226 (93- 437)
N0	23 (52,3%)	19 (54,3%)		Surgery Duration (min)	260 (165- 343)	315 (240- 480)
N1	10 (22,7%)	4 (11,4%)		Anesthesia duration (min)	366 (300- 540)	480 (379- 600)
N2	4 (9,1%)	3 (8,6%)			0,023	0,004
N3	1 (2,3%)	0 (0%)				
NX	6 (13,6%)	9 (25,7%)				
M						
M1	7 (20,6%)	1 (3,6%)				
M0	27 (79,4%)	27 (96,4%)				

Table 2. CTCA findings

Category (CTCA findings)	Variable	Myocardial Injury		p
		No	Yes	
normal	46 (55%)	38 (45%)		0,000
non-obstructive				
uniarterial ≥50%	17 (37%)	9 (25,7%)		0,072
2 or more arteries ≥50%	25 (54,3%)	15 (42,9%)		
Coronary artery calcium - AGATSTON	3 (6,5%)	9 (25,7%)		
<100	1 (2,3%)	0 (0%)		0,005
100-399	16 (36,4%)	12 (34,3%)		
400-999	12 (27,3%)	8 (21,1%)		
>1000	5 (11,4%)	2 (5,7%)		


Table 3. Multiple logistic regression for myocardial injury

Variable	Parameter	Standart error	OR	IC 95%	p
Anesthesia duration (min)	0,007	0,003	1,007	1,001	0,017
Glicemia (mg/dL)	-0,042	0,019	0,959	0,924	0,027
Constant	1,413	2,119			

Table 4. Outcomes

Outcomes	n	%
MACCE	6	7,10%
Death (general cause)	5	5,90%
Complex arrhythmias	0	0
Cardiovascular death	1	1,19%
Acute coronary syndrome	0	0,00%
Heart failure	0	0,00%
Sudden death cardiac arrest	0	0
Other outcomes		
Myocardial injury	38	45,20%
Acute renal failures (AKIN)	20	23,80%
Rehospitalization	12	15,30%
Embolic events	3	3,60%
Atrial fibrillation	2	2,40%

Figure 2. Calcium score and MINS

DISCUSSION

- In this study we found that obstructive coronary artery disease uniarterial and two or more arteries were higher in the MINS group
 - Uniarterial: 25.7% vs 6.5%
 - 2 or more : 5.7% vs 2.2%
- Calcium score : CAC < 100
 - 78.3% of patients without MINS vs 40% of patients with MINS
- Calcium score : CAC > 100
 - 60% of patients with MINS vs 21.7% of patients without MINS (P = 0.005)
- We found a MACCE rate of 7.1% in the postoperative period of major oncologic surgeries
- MINS: we found a rate of 45.2%, higher compared to previous studies that showed an incidence of 16.0% in general surgeries
- Multivariate analysis identified as predictive variables :
 - Preoperative glycemia
 - Anesthesia duration
- For an increase in a blood glucose unit the chance of myocardial injury decreases 0.959 times and for every minute of anesthesia duration increases 1.007 times the chance of event

CONCLUSIONS

- The incidence of MINS was higher in the postoperative period of oncologic surgeries when compared to the general surgery data present in the literature
- With the partial analysis of the results, we observed that in the MINS group, esophagectomy surgery was more frequent, increased use of DVA and higher rate of transfusions
- Association of higher calcium score in coronary angiography with higher MINS event

REFERENCES

- Hwang JW, Kim EK, Yang JH, Chang SA, Song YB, Hahn JY, et al. Assessment of perioperative cardiac risk of patients undergoing noncardiac surgery using coronary computed tomographic angiography. *Circulation Cardiovascular Imaging*. 2015;8(3).
- Puelacher C, Lurati Buse G, Seegerer D, Szegary L, Marbot S, Lampart A, et al. Perioperative Myocardial Injury After Noncardiac Surgery: Incidence, Mortality, and Characterization. *Circulation*. 2018;137(12):1221-32.
- Koshy AN, Ha FJ, Gow PJ, Han HC, Amirul-Islam FM, Lim HS, et al. Computed tomographic coronary angiography in risk stratification prior to non-cardiac surgery: a systematic review and meta-analysis. *Heart*. 2019.

DISCLOSURES

All the authors have no conflicts of interest to disclosure.