Improving Cardiovascular Health Among Indigenous Communities: Effective Solutions and Interventions

Mandy Fretts, PhD
Jason Deen, MD, FAAP, FACC
University of Washington
Land Acknowledgement

We acknowledge that the University of Washington is on unceded Coast Salish land, which houses diverse, strong, and enduring communities that uphold a sacred legacy of protecting future generations.
Outline

• Background
• Risk factors (including social drivers of health)
• Solutions and interventions
• Questions
The scope of the problem . . .

Rising Tide of Cardiovascular Disease in American Indians
The Strong Heart Study

Barbara V. Howard, PhD; Elisa T. Lee, PhD; Linda D. Cowan, PhD; Richard B. Devereux, MD; James M. Galloway, MD; Oscar T. Go, PhD; William James Howard, MD; Everett R. Rhoades, MD; David C. Robbins, MD; Maurice L. Sievers, MD; Thomas K. Welty, MD

![Bar Chart]

Circulation. 1999;99:2389-2395
Burden of Cardiometabolic Disease in American Indians

• Cardiovascular diseases (CVD) & diabetes mellitus are leading causes of morbidity & mortality among American Indians (AIs)

• AIs have an exaggerated prevalence of obesity and diabetes mellitus compared to the general population
Burden of Cardiometabolic Disease in American Indians

- AIs have premature CVD mortality and morbidity
 - CVD mortality rate 20% greater among AIs than other US races
 - AIs die of CVD at younger ages
 - 36% will die before age 65 compared to 14.7% of non-Hispanic whites

Burden of Cardiometabolic Disease in American Indians

• Prevalence of diabetes mellitus among Strong Heart Study participants aged 45-74 years in 1989 was 45% (compared to 7.7% in gen. pop)

• High burden of diabetes mellitus in AI communities may be at least partly attributable to changes in lifestyle (as well as other social factors)
Social Drivers of Health

- Social drivers of health and psychological health factors are important CVD risk factors in Al's
Social Drivers of Health

• Systemic racism
• Historical trauma
• Neighborhood safety, food insecurity, lack of access to preventative care, and financial and economic depression
• Anxiety, depression, PTSD, substance abuse, intimate partner violence, sociocultural roles
Adverse Childhood Experiences

Mechanism by which Adverse Childhood Experiences Influence Health and Well-being Throughout the Lifespan
Strong Heart Study

- Largest & longest ongoing multi-tribal study of CVD in AIs
- 12 participating tribes from AZ, OK, ND, SD
Strong Heart Study Objectives

• Quantify prevalent CVD and its risk factors
• Quantify incident CVD events
• Evaluate preclinical CVD
Strong Heart Study Design

• Two AI cohorts:
 – Original cohort (Strong Heart Study)
 • 4,549 participants
 • 45-74 years
 • 59% female
 • Began in 1988
Strong Heart Study Design

• Two AI cohorts:
 – Family cohort (Strong Heart Family Study)
 • 3,665 participants
 • 14-94 years
 • 60% female
 • Began in 1998
 • Extended SHS by including family members and added the identification of genetic risk factors for CVD.
SHS is community-based research

- 30+ year partnership
- Tribal communities guide study goals
- Tribes and participants involved in all aspects of the study (design, data collection, dissemination) and are considered co-PIs
Strong Heart Study Key Findings

• Rates of coronary heart disease higher than other US populations

• Very high rates of insulin resistance and diabetes

Rising Tide of Cardiovascular Disease in American Indians: The Strong Heart Study

Circulation. 1999;99:2389-2395
doi: 10.1161/01.CIR.99.18.2389
Circulation is published by the American Heart Association, 7372 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7332. Online ISSN: 1524-4539
Strong Heart Study Key Findings

- Diabetes is a major risk factor for CVD
- Diabetes in youth and young adults leads to subclinical CVD

Cardiac Geometry and Function in Diabetic or Prediabetic Adolescents and Young Adults

The Strong Heart Study

CONCLUSIONS—In a population of adolescents and young adults, DM is independently associated with early unfavorable cardiovascular phenotype characterized by increased left ventricular mass, concentric geometry, and early preclinical systolic and diastolic dysfunction; early cardiovascular alterations are also present in participants with prediabetes.

Diabetes Care 34:2300–2305, 2011
Unique CVD risk factors in AIs

• Albuminuria
• Elevated fibrinogen
• Left ventricular hypertrophy
• Prolonged QRSd on resting ECG in women
• Al-specific, sex-stratified coronary heart disease risk calculator
• Designed for >30 years of age
• Estimated 10-year risk of developing CHD
SHS CHD Risk Calculator

<table>
<thead>
<tr>
<th>Prediction using (select one)</th>
<th>LDL-C and HDL-C</th>
<th>TC and HDL-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are you currently taking hypertension medications for high blood pressure?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Systolic Blood Pressure (SBP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C or TC (mg/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do you have diabetes?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Are you a current smoker?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Do you have microalbuminuria?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Do you have macroalbuminuria?</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Your Estimated Risk: 0 %

https://strongheartstudy.org
• AI-specific tool used to estimate the risk of developing diabetes
• Designed for >35 years of age
• Estimates 4-year risk of developing diabetes
SHS DMII Risk Calculator

This calculator predicts the risk of developing incident diabetes (DM) defined by either fasting plasma glucose (FPG) or hemoglobin A1c (HbA1c) (denoted as FPG/A1C-DM), or by HbA1c only (denoted as A1C-DM), or by FPG only (denoted as FPG-DM) in the next 4 years for a person who does not currently have FPG/A1C-DM, or A1C-DM, or FPG-DM, respectively (select one).

Predictors
- **Gender**: Male or Female
- **Age (year)**
- **Waist circumference (cm)**
- **Taking hypertension medications for high blood pressure?** Yes or No
- **Systolic blood pressure (SBP) (mmHg)**
- **Diastolic blood pressure (DBP) (mmHg)**
- **Do you have any of sisters or brothers who had diabetes?** Yes or No
- **Fasting plasma glucose (FPG) (mg/dL)**
- **Hemoglobin A1c (HbA1c) (%)**
- **Triglycerides (TG) (mg/dL)**
- **Urinary albumin and creatinine ratio (UACR) (mg/g)**

Calculations
- **Your Estimated Risk:** 0%

URL
- https://strongheartstudy.org
• Al-specific tool used to estimate the risk of developing hypertension
• Designed for >35 years of age
• Estimates 4-year risk of developing hypertension
Metric for Cardiovascular Health: Life’s Essential 8

- Modifiable health factors applied to CVD prevention
 - Hypertension, Dyslipidemia, Diabetes, Obesity, Diet, Physical activity, Nicotine exposure, Sleep
Metric for Cardiovascular Health: Life’s Essential 8 (Range: 0-100 points)

<table>
<thead>
<tr>
<th>Metric</th>
<th>100 Points</th>
<th>0 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet</td>
<td>≥95<sup>th</sup> percentile HEI-2015</td>
<td><25<sup>th</sup> percentile HEI-2015</td>
</tr>
<tr>
<td>Activity</td>
<td>≥150 min/week or 10,000+steps/day</td>
<td>No activity, <2000 steps/day</td>
</tr>
<tr>
<td>Nicotine</td>
<td>Never smoker; no secondhand exposure</td>
<td>Current smoker</td>
</tr>
<tr>
<td>Sleep</td>
<td>7-9 hours</td>
<td><4 hours</td>
</tr>
<tr>
<td>BMI</td>
<td><25</td>
<td>≥40</td>
</tr>
<tr>
<td>Non-HDL cholesterol*</td>
<td><130 mg/dL</td>
<td>≥220=0</td>
</tr>
<tr>
<td>Glucose</td>
<td>No dm & FBG<100 (or HbA1c<5.7)</td>
<td>dm with HbA1c ≥10</td>
</tr>
<tr>
<td>Blood Pressure*</td>
<td><120/80</td>
<td>SBP ≥160 or DBP ≥100=0</td>
</tr>
</tbody>
</table>

*subtract 20 points if treated
Distribution of Ideal Cardiovascular Health Metrics in the Strong Heart Family Study

<table>
<thead>
<tr>
<th>Ideal Cardiovascular Health Metric</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Behaviors</td>
<td></td>
</tr>
<tr>
<td>Diet (80-100 score of AHEI diet index)</td>
<td>0</td>
</tr>
<tr>
<td>Physical Activity (10,000+ steps per day)</td>
<td>12.8</td>
</tr>
<tr>
<td>Nicotine Exposure (never smoker)</td>
<td>22.2</td>
</tr>
<tr>
<td>Sleep (7-9 hours/night)</td>
<td>NA</td>
</tr>
<tr>
<td>Health Factors</td>
<td></td>
</tr>
<tr>
<td>BMI (<25 kg/m²)</td>
<td>20.1</td>
</tr>
<tr>
<td>Lipids (<130 mg/dl of non-HDL cholesterol)</td>
<td>50.4</td>
</tr>
<tr>
<td>Blood Pressure (<120/80 mmHg)</td>
<td>37.2</td>
</tr>
<tr>
<td>Blood Glucose (no hx dm & FBG<100 mg/dl or HbA1c<5.7%)</td>
<td>61.2</td>
</tr>
</tbody>
</table>

Hazard Ratios for Association of Life’s Essential 8 Goals with Incident CVD in the Strong Heart Family Study

<table>
<thead>
<tr>
<th></th>
<th>% of population in each CVH strata</th>
<th>CVD cases</th>
<th>Incident rate (per 1000 person-years)</th>
<th>Adjusted Hazard Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td>274</td>
<td>7.43</td>
<td></td>
</tr>
<tr>
<td>Low CVH</td>
<td>28.4%</td>
<td>138</td>
<td>14.5</td>
<td>1 (Ref)</td>
</tr>
<tr>
<td>Moderate CVH</td>
<td>49.8%</td>
<td>120</td>
<td>6.4</td>
<td>0.45 (0.14-0.44)</td>
</tr>
<tr>
<td>High CVH</td>
<td>21.8%</td>
<td>16</td>
<td>1.8</td>
<td>0.25 (0.14-0.44)</td>
</tr>
</tbody>
</table>

Diet Quality in the Strong Heart Family Study

- 4.5+ cups fruits & veg/day: NHANES '05-'06: 3.7%, SHFS '01-'03: 9.4%
- 2+ 3.5 oz srv fish/week: NHANES '05-'06: 0.37%, SHFS '01-'03: 16.5%
- 3+ srv whole grains/day: NHANES '05-'06: 0%, SHFS '01-'03: 5.5%
- <1,500 mg sodium/day: NHANES '05-'06: 13.8%, SHFS '01-'03: 18.8%
- <36 oz sweetened beverage/week: NHANES '05-'06: 29%, SHFS '01-'03: 39.7%
- ≤2 srv processed meats/week: NHANES '05-'06: 34.7%, SHFS '01-'03: 50.9%
- <7% cal from saturated fat: NHANES '05-'06: 2.4%, SHFS '01-'03: 9.6%
- 4+ srv nuts, legumes, seeds: NHANES '05-'06: 17.7%, SHFS '01-'03: 23.3%

Odds Ratio of Incident Cardiovascular Diseases According to Depressive Symptoms in the Strong Heart Family Study

<table>
<thead>
<tr>
<th>CES-D Quartile</th>
<th>No. Cases/No. at Risk</th>
<th>Adjusted Hazard Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>131/1135</td>
<td>1.0 (Ref)</td>
</tr>
<tr>
<td>II</td>
<td>54/466</td>
<td>1.19 (0.76, 1.85)</td>
</tr>
<tr>
<td>III</td>
<td>54/343</td>
<td>1.60 (1.09, 2.37)</td>
</tr>
<tr>
<td>IV</td>
<td>23/265</td>
<td>1.70 (1.01, 2.88)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depressive Symptoms</th>
<th>% of population in each CES-D Strata</th>
<th>Adjusted Hazard Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>CES-D<16</td>
<td>72.7</td>
<td>1 (Ref)</td>
</tr>
<tr>
<td>CES-D≥16</td>
<td>27.3</td>
<td>1.54 (1.06-2.23)</td>
</tr>
</tbody>
</table>

Analyses led by Santori S (UW). Manuscript in development
Addressing CVD in AIs through multi-level interventions

- Intergenerational trauma in AI communities increases ACEs and leads to health inequities
- Mistrust in US government and research community hinders care delivery
- Requires effort to regain trust to identify strength-based health interventions
<table>
<thead>
<tr>
<th>Areas of intervention</th>
<th>Suggested solutions</th>
<th>Gaps and challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated care delivery</td>
<td>Provide appropriate screening and transfer of individuals with high-risk pregnancies to higher levels of care with multidisciplinary team-based care in preventive cardiology, maternal-fetal medicine, cardio-obstetrics, and psychiatry. Provide contraceptive care and shared decision making around termination. Initiate first-line management of complications and adherence to quality bundles and initiatives to reduce death and morbidity.</td>
<td>Data collection, aggregation, and transfer of maternal health outcomes.</td>
</tr>
<tr>
<td>Organization of care</td>
<td>Develop an available, accessible, affordable, and competent workforce that integrates community voices and AI/AN traditions into culturally sensitive care. Ensure shared decision making that includes AI/AN and tribal representation. Incorporate midwives, social workers, mental health counselors, doulas, AI/AN traditional healers, knowledge bearers, birth workers and peers, community health workers, and physician extenders into care. Expand digital and telehealth in resource-limited areas as a supplement to existing care resources but not as a substitute for care and to provide sufficient resources to these areas.</td>
<td>Increase the financial resources currently being deployed, and strategically increase investment in tribes, IHS facilities, and culturally safe community-based programs by earmarking funds for this purpose. Telemedicine may not reach AI/AN community members with severely limited means. Reimbursement structures are not inclusive of necessary collaborators such as AI/AN traditional healers, birth workers, and midwives.</td>
</tr>
<tr>
<td>Innovative practice categories</td>
<td>Improve health education and health promotion in Life’s Essential 8 metrics from childhood throughout childbearing age. Improve preconception, antenatal, and postpartum CVH measures.</td>
<td>High burden of cardiovascular comorbidities and low preventive care services.</td>
</tr>
<tr>
<td>Values and philosophy</td>
<td>Build trust with respect, communication, and community knowledge, and understand the needs of reproductive-aged individuals. Deliver care tailored toward creating understanding historical perspective, childhood trauma, and circumstances unique to maternal needs.</td>
<td>Assess childhood trauma in individuals and population and develop strategies to mitigate it.</td>
</tr>
</tbody>
</table>

AI/AN indicates American Indian/Alaska Native; CVH, cardiovascular health; IHS, Indian Health Service; and PMSS, Pregnancy Mortality Surveillance System.
Example CVH Interventions: Strong Heart Study Communities

- Understand local landscape (barriers, facilitators to health)
- Partner with community leaders & health care organizations

- USDA Market Basket Assessment
 - Healthy Food, Healthy Families Feasibility Study
 - Cooking for Health
 - GUSNIP Produce Prescription Program
Thank you!
amfretts@uw.edu
jdeen@uw.edu
Access the Companion Guide

ACC HEALTH EQUITY WEBINAR COMPANION GUIDE
Improving Cardiovascular Health Among Indigenous Communities: Effective Solutions and Interventions

Jason Deen MD, FAAP, FAAC; Amanda M. Fretts, PhD, MPH

BACKGROUND

The ACC Health Equity Webinar Companion Guides are a complementary resource for the ACC Health Equity Webinar series. The webinar series, produced by the ACC Diversity and Inclusion Committee, offers clinically relevant, evidence-based findings focused on health care disparities as they pertain to minority racial and ethnic groups and under-represented populations in cardiovascular care. This guide provides the background, highlights, and clinical pearls from the "Improving Cardiovascular Health Among Indigenous Communities: Effective Solutions and Interventions" webinar.
THANK YOU

• Webinar Recording Coming Soon
• Complete the evaluation
• Questions?
 – Contact Akua Asare (aasare@acc.org) or Ryan Meyer (rmeyer@acc.org)