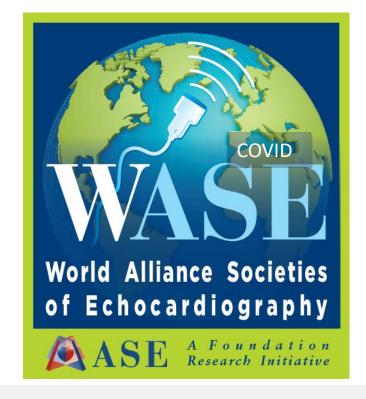


Human vs AI-Based Echocardiography Analysis as Predictor of mortality in Acute COVID-19 Patients:

WASE-COVID Study

Federico M Asch, MD, FASE, FACC


Director, CV Core labs and Cardiac Imaging Research

MedStar Health Research Institute

Washington, DC - USA

Federico Asch MD FASE, PI Roberto Lang MD FASE, PI

American Society of Echocardiography Foundation,

Alliance Partners and Global Collaborators

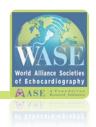
Disclosures

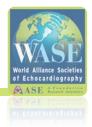
WASE- COVID has been funded by

American Society of Echocardiography Foundation

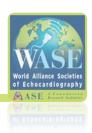
MedStar Health University of Chicago

with in-kind donations by **Oultromics**




Institutional Research Grants: Ultromics, TOMTEC, Caption Health, GE, Butterfly.

Scientific Advisory Board: Ultromics


Background

- Transthoracic echocardiography (TTE) has emerged as the leading cardiac imaging modality for patients admitted with COVID-19 infection
- Myocardial injury has been linked with poor outcomes, therefore an
 echocardiogram at admission may prove to be a powerful tool to predict death.
- The role of AI in cardiovascular imaging and specifically echocardiography is expanding, to facilitate image acquisition and analysis
- With reader-dependent technologies such as echocardiography, fully automated,
 AI-based analysis should result in lower variability of results than those obtained from human reads.
- With increased interpretation consistency, it is foreseeable that the use of automated measurements could improve the capacity to predict outcomes.

Aims

- 1- To explore <u>association</u> of echo variables with in-hospital mortality (Phase 1)
- 2- To describe the performance of machine learning -derived algorithms for <u>prediction</u> of death in patients admitted for acute COVID-19 infection and its incremental value to that of expert echocardiographer analysis (Phase 2)

WASE-COVID study Design

Observational, International

Phase 1- Retrospective Enrollment:

Adults Hospitalized for COVID-19 infection

(+) specific PCR or Antigen

Clinically-indicated echo

Echocardiogram:

Acquisition by center standards

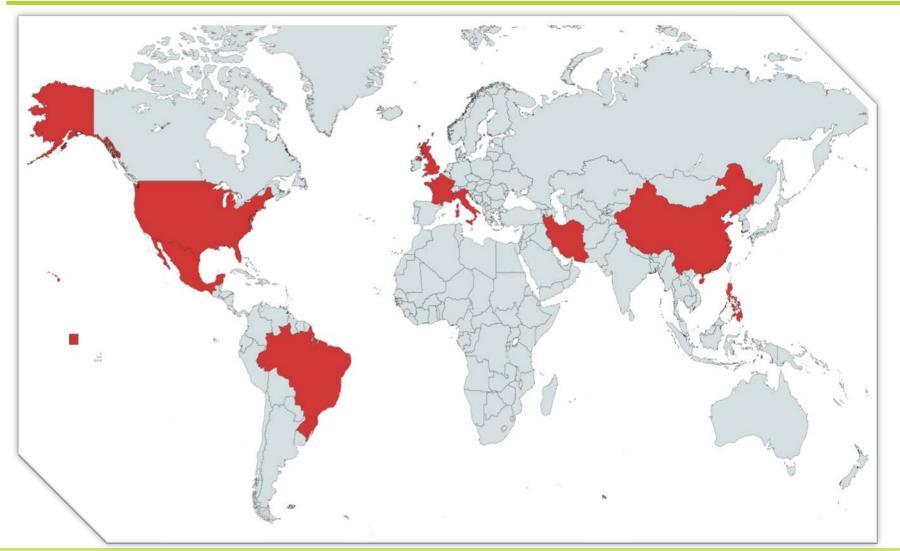
Central, independent analysis (ASE Guidelines)

Phase 2- Prospective Follow-up > 3 months,

Medical encounter, med records, or phone call.

Outcome: All-cause mortality

COVID + Echo acquisition


Hospital care

Enrollment

Discharge Echo analysis

n=870, 13 centers, 9 countries

USA x2

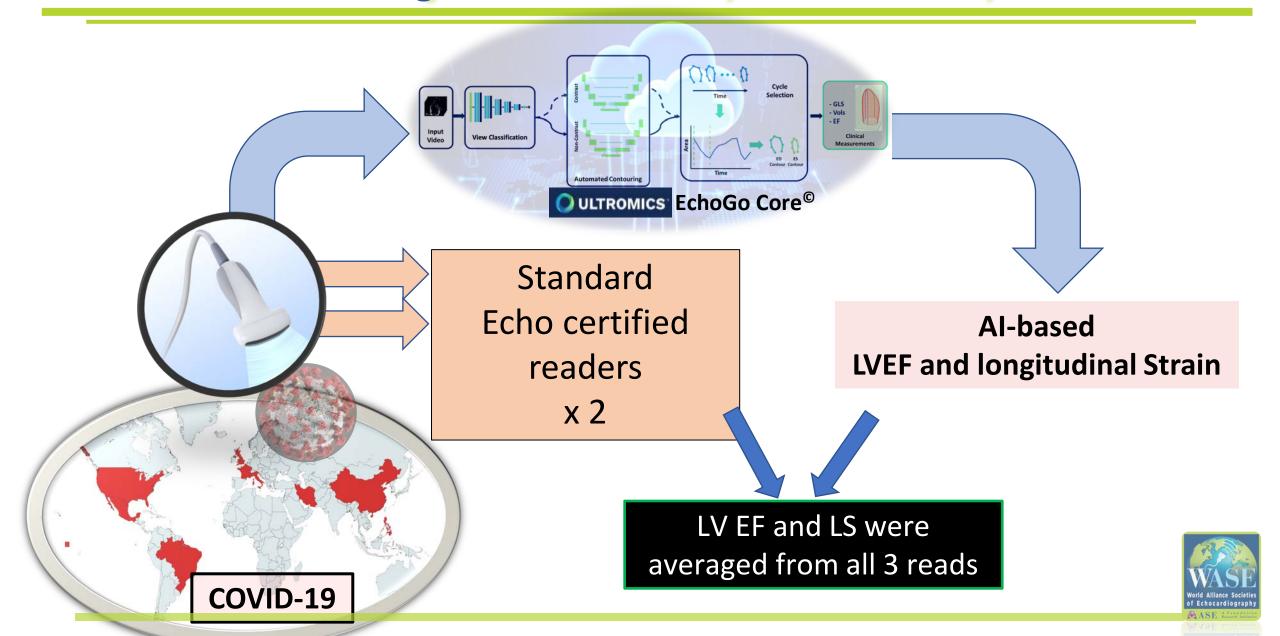
Mexico x2

Brazil

UK

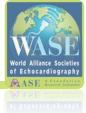
France

Italy x2


Iran x2

China

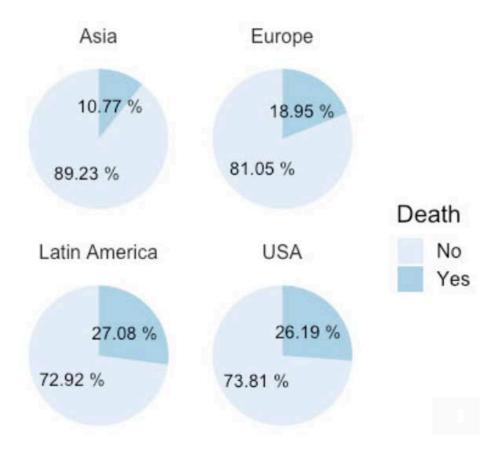
Philippines

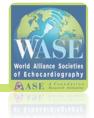


2D Echo analysis - LVEF, volumes, LV LS

Population n=870

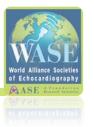
Age		59 ± 15
Sex, %	Female	43.8
Ethnicity, %	White non-Hispanic	22.6
	White Hispanic	17.5
	Black	15.6
	Asian	31.1
	Mixed	8.3
	Other	3.9
	Unknown	0.9
Blood pressure, mmHg	SBP	123 ± 19
	DBP	75 ± 12
Heart rate, BPM		85 ± 15
Status at initial TTE, %	ICU	46.2
	Mechanical Ventilation	27.1
	Hemodynamic support	17.8
Previous conditions, %	Heart disease	62.5
	Lung disease	14.6
	Kidney disease	9.2
	Hypoxemia	2.8



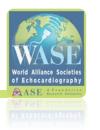

Echo characteristics

Characteristic	All
Left Ventricle (AI/human)	(n=722)
LV EF, %	60.2 (±12.3)
LVEDV, ml	107.9 (45.1)
LVESV, ml	44.8 (±33.7
LVLS, %	-18.7 (±5.3)
Right Ventricle (no AI)	(n=509)
RV FW strain, %	-22.8 (±6.1)
RV basal dimension, cm	4 (±2.5)
Pericardial effusion, (n, %)	145 (19.4%)

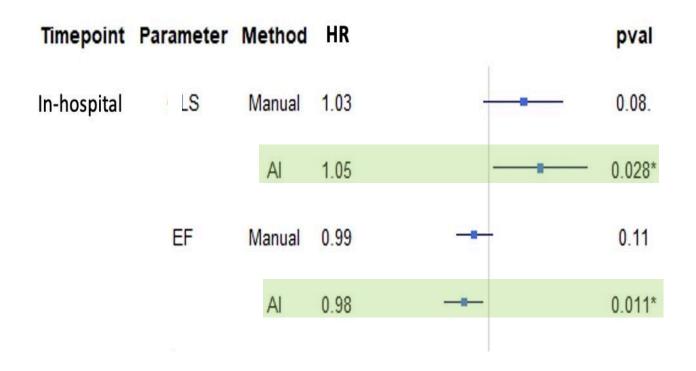
In-Hospital all cause mortality: 188 (21.6%)



LV LS was associated with in-hospital death, LVEF was not

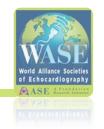

(forward stepwise linear regression)

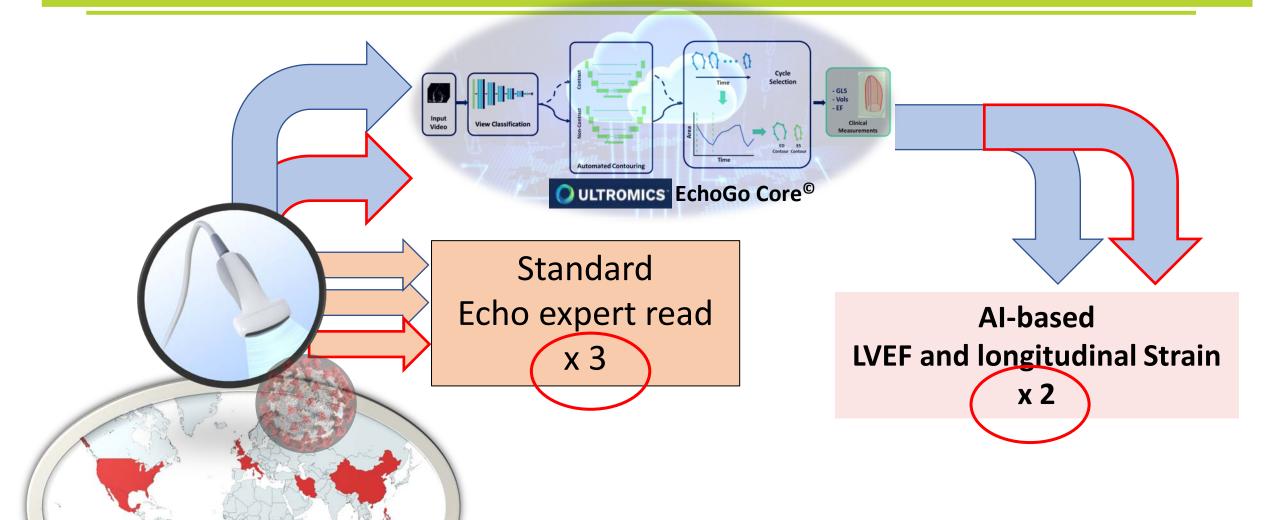
Multivariate Analysis					
Model 1 (LV)					
Age	1.118 [1.051, 1.219]	0.003			
LV LS	1.179 [1.045, 1.358]	0.012			
LDH (log)	6.17 [1.744, 28.734]	0.009			
Previous lung disease	7.322 {1.561, 42.152]	0.015			
Model 2 (RV)					
LDH (log)	5.691 [1.898, 20.844]	0.003			
Age	1.080 [1.034, 1.141]	0.002			
RVFWS	1.136 [1.037, 1.256]	0.007			



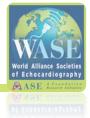
Conclusions - Phase 1

 When measurements were averaged, LV LS, RVFWS, in addition to age, LDH, and previous lung disease were independently associated with in-hospital mortality, while LVEF was not.


Cox proportional Hazard Regression

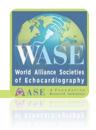


Hypothesis (Phase 2)


LVEF and LV LS obtained using AI-derived algorithms will have <u>less</u> inter-reader <u>variability</u> and will result in a <u>better predictor</u> of mortality than expert readers.

2D Echo analysis - LVEF, volumes, LV LS

COVID-19



Prospective Follow-up

476 TTE read was feasible both by manual and AI

230 (± 115) days of follow-up

Mortality was 27.4% (n=238: 188 in-hospital, 50 follow-up)

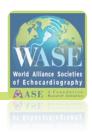
Variability – Al

LV EF

	Method	Frame selection	N	R (Pearson correlation) [95%CI]	ICC [95%CI]
	Al	۸.11	385	0.853 [0.824, 0.878]	0.854 [0.824, 0.879]
]	Manual	All	319	0.670 [0.605, 0.727]	0.655 [0.573, 0.722]
	Al	Carra	49	0.996 [0.994, 0.998]	0.996 [0.993, 0.998]
	Manual	Same	14	0.683 [0.239, 0.891]	0.680 [0.240, 0.886]
	Al	Different	336	0.832 [0.796, 0.862]]	0.832 [0.796, 0.862]
	Manual		305	0.671 [0.504, 0.728]	0.654 [0.569, 0.723]

LV LS

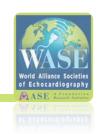
Al	A 11	385	0.789 [0.784, 0.824]	0.789 [0.748, 0.824]
Manual	All	339	0.430 [0.336, 0.515]	0.430 [0.336, 0.515]
Al	[]	49	0.987 [0.977, 0.993]	0.987 [0.977, 0.993]
Manual	Same	14	0.497 [<0.001, 0.813]	0.510 [<0.001, 0.814]
Al	Different	296	0.761 [0.712, 0.803]	0.761 [0.712, 0.803]
Manual	Dillerent	305	0.427 [0.330, 0,514]	0.426 [0.330, 0.514]



Factors responsible for Within-Patient Variance

Variable	EF		LS		
	Manual	Al	Manual	Al	
	Variance	Variance	Variance	Variance	
	(% total)	(% total)	(% total)	(% total)	
Frame	1.033 (1.40%)	2.362 (6.30%)	0.876 (2.74%)	0.588 (5.96%)	
Operator	34.946 (47.39%)	0.067 (0.18%)	16.537 (51.81%)	0.140 (1.42%)	
Reading Round	<0.0001 (<0.001%)	0.016 (0.04%)	0.115 (0.36%)	0.109 (1.11%)	
Image quality	<0.0001 (<0.0001)	<0.0001 (<0.0001)	<0.0001 (<0.0001%)	<0.0001 (<0.0001%)	

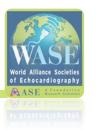
Variance in Manual was large and was mostly due to the operator


Variance in AI was small and was due to video frame selection

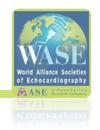
Prediction of mortality


Univariable Logistical Regression

Parameter		Mortality				
		In-Hospital		Follow-up		
		Odd Ratio [95% CI]	p-value		Odd Ratio [95% CI]	p-value
Echocardiographic parameters (Continuous)						
LVEF manual		0.985 [0.969, 1.003]	0.083		0.990 [0.975, 1.005]	0.187
LVEF AI		0.970 [0.952, 0.988]	0.001		0.974 [0.956, 0.991]	0.003
LVLS manual		1.035 [0.999, 1.074]	0.058		1.024 [0.991, 1.059]	0.155
LVLS AI		1.082 [1.035, 1.132]	<0.001		1.060 [1.019, 1.105]	0.004


Multivariable forward-step logistical regression

Parameter	OR [95% CI]	p-value
LVEF manual	0.983 [0.955, 1.012]	0.255
LVEF AI	0.968 [0.939, 0.997]	0.031
LVLS manual	1.038 [0.975, 1.108]	0.254
LVLS AI	1.096 [1.022, 1.179]	0.012


Limitations

- Patients were enrolled in a retrospective manner
- Not all echocardiograms could be quantified
- Echocardiograms did not include sufficient information to assess the left atrium, diastolic function and pulmonary pressures
- Findings may be applicable to patients with COVID-19, not necessarily to other patients
- However, if broadened to a wider patient population with better image quality, it is conceivable that AI contouring could be feasible in a much higher proportion of patients and therefore have more power

Conclusions (Phase 2)

- Automated quantification of LVEF and LVLS using AI minimized variability
- Al-based LV analyses, but not manual, were significant predictors of in-hospital and follow-up mortality.
- Al analysis of echoes could increase statistical power to predict outcomes, possibly requiring smaller sample sizes in clinical trials

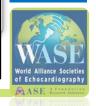
WASE-COVID Investigators

Tine Descamps PhD Rizwan Sarwar PhD **Ilya Karagodin MD Cristiane Carvalho Singulane MD** Mingxing Xie MD PhD **Edwin S Tucay MD Ana C Tude Rodrigues MD** Zuilma Y Vasquez-Ortiz MD PhD Mark J. Monaghan PhD **Bayardo A Ordonez Salazar MD Laurie Soulat-Dufour MD Azin Alizadehasl MD** Atoosa Mostafavi MD **Antonella Moreo MD** Rodolfo Citro MD **Akhil Narang MD** Chun Wu MD PhD Karima Addetia MD **Ross Upton** Gary M. Woodward PhD

Additional WASE COVID Investigators

Vince Ryan V Munoz MD, Philippine Heart Center, Quezon City, Philippines;

Rafael Porto De Marchi MD, Radiology institute of the University of Sao Paulo Medical School, São Paulo, Brazil;


Sergio M. Alday-Ramirez PhD and Consuelo Orihuela MD, Instituto Nacional de Ciencias Medicas y Nutricion (INCMNSZ), CDMX, Mexico; Anita Sadeghpour MD FASE, Rajaie Cardiovascular Medical and Center, Echocardiography Research Center, IUMS, Tehran, Iran;

Jonathan Breeze MD and Amy Hoare, King's College Hospital, London, UK; Carlos Ixcanparij Rosales MD, Centro Nacional 20 de Noviembre, ISSSTE, CDMX, Mexico;

Ariel Cohen MD, Hôpitaux de l'est parisien St Antoine-Tenon, Universite Pierre et Marie Curie, Paris, France;

Martina Milani MD, Ilaria Trolese RDCS, Oriana Belli MD and Benedetta De Chiara MD, Ospedale Niguarda, Milan, Italy;

Michele Bellino MD and **Giuseppe Iuliano** MD, University of Salerno, Salerno, Italy.

