Transcatheter vs Surgical Aortic Valve Replacement in Low Risk Patients:

3-Year Outcomes from the Evolut Low Risk Trial

John K. Forrest, MD

Director of Interventional Cardiology Director of Structural Heart Program Yale University School of Medicine Yale New Haven Health System @johnkforrest

For the Evolut Low Risk Trial Investigators

Disclosures

Within the past 12 months, I have had a financial interest/arrangement or affiliation with the organization(s) listed below

Financial Relationship

Research grants, consulting fees, honoraria, speakers bureau fees

Company

Medtronic, Edwards Lifesciences

Evolut Low Risk Study Administration

Principal Investigators

Michael Reardon, MD

Methodist DeBakey

Heart and Vascular Center

John Forrest, MD
Yale University
School of Medicine

Executive Committee

Michael Reardon, MD

Methodist DeBakey

Heart and Vascular Center

G. Michael Deeb, MD University of Michigan Health Systems

Steven Yakubov, MD
OhioHealth Riverside
Methodist Hospital

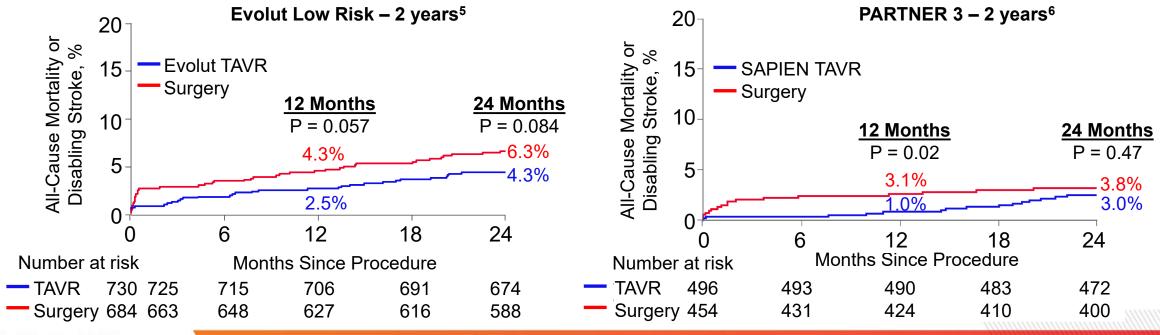
Steering Committee

David Adams, Stanley Chetcuti, G. Michael Deeb, John Forrest, John Heiser, William Merhi, Mubashir Mumtaz, Daniel O'Hair, Jon Resar, Joshua Rovin, Michael Reardon, Paul Teirstein, Steven Yakubov, George Zorn Screening Committee: Michael Reardon, G. Michael Deeb, Steven Yakubov, Robert Stoler, Thomas Gleason

Echo Core Laboratory: Jae Oh, Mayo Clinic

Statistical Analyses: Jian Huang, Medtronic

Sponsor: Medtronic


- Now approved for all patients with aortic stenosis regardless of surgical risk, TAVR has become the dominant form of AVR in the US.
- Current ACC/AHA guidelines recommend that heart teams utilize a shared decision-making process when discussing AVR with patients aged 65-80 years.¹
- In younger lower-risk patients the faster recovery and shortterm benefits after TAVR must be balanced with long-term durability, however limited intermediate and long-term data exist to guide such discussions in this patient population.

Background

- Randomized data of TAVR vs surgery from high and intermediate risk patients demonstrate similar survival outcomes at 5 years.¹⁻⁴
- Data in low-risk patients have shown promising short-term outcomes, but continued follow-up to guide shared decision is needed.

¹Gleason TG, et al. JACC 2018;72:2687-2696. ²Mack MJ, et al. Lancet 2015;385:2477-2484. ³Van Mieghem NM, et al. JAMA Cardiol 2022;7:1000-1008. ⁴Makkar RR, et al. NEJM 2020;382:799-809. ⁵Forrest JK, et al. JACC 2022;79:882-896. ⁶Leon MB, et al. JACC 2021;77:1149-1161.

Evolut Low Risk Study Design

Low risk of death (<3%) from surgery Anatomy suitable for both TAVR and SAVR

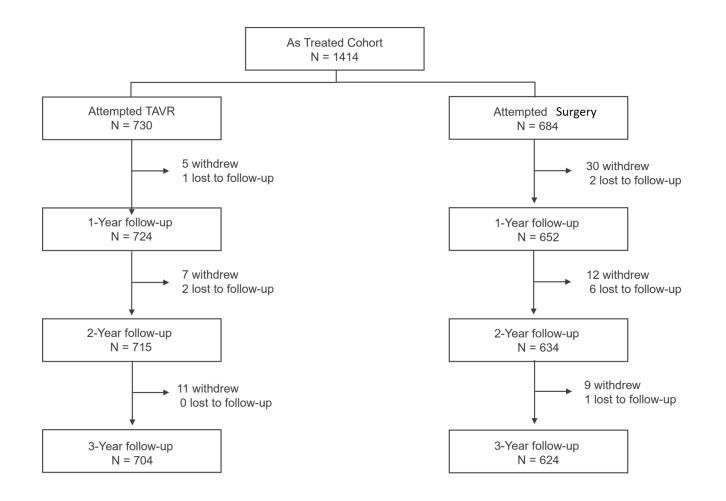
Heart Team Evaluation

Screening Committee
Confirmed eligibility

1:1 Randomization

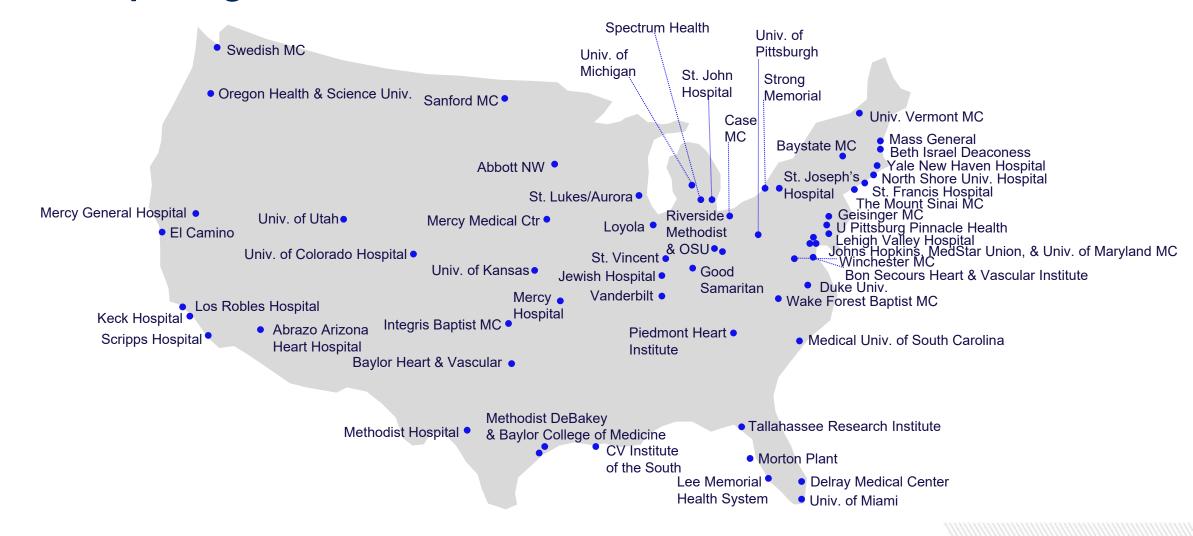
May 2016 to May 2019

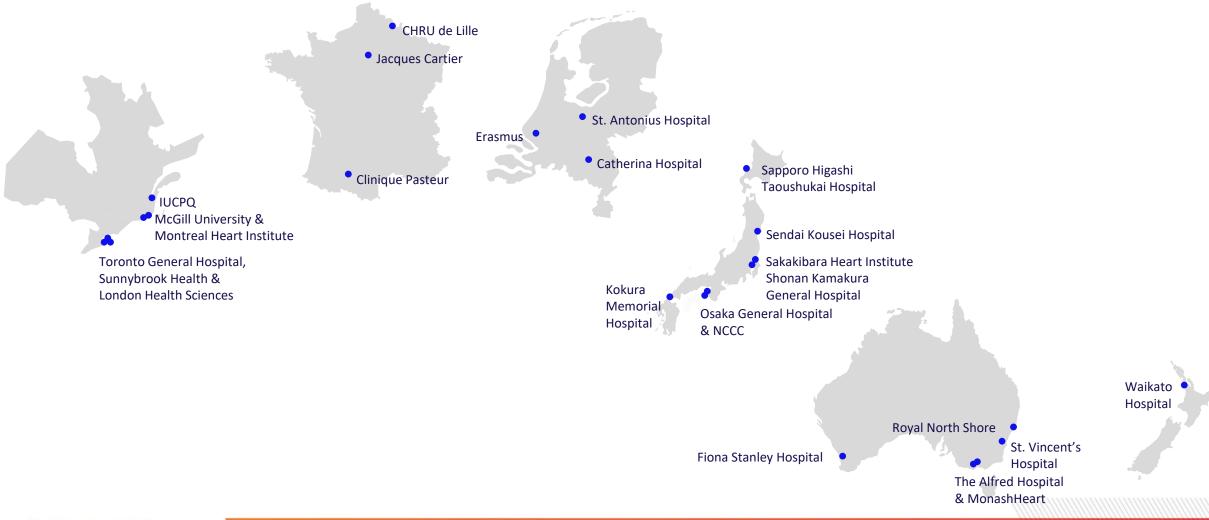
TAVR N=730


Surgery N=684 **Clinical Events Committee**

Adjudicated all endpoints

Echo Core Laboratory

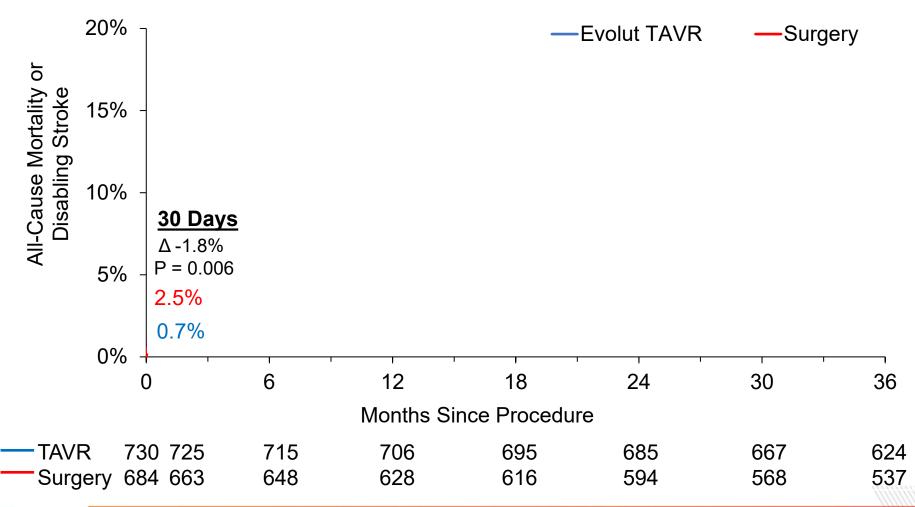

Evaluated all echocardiograms



Participating Sites in the United States

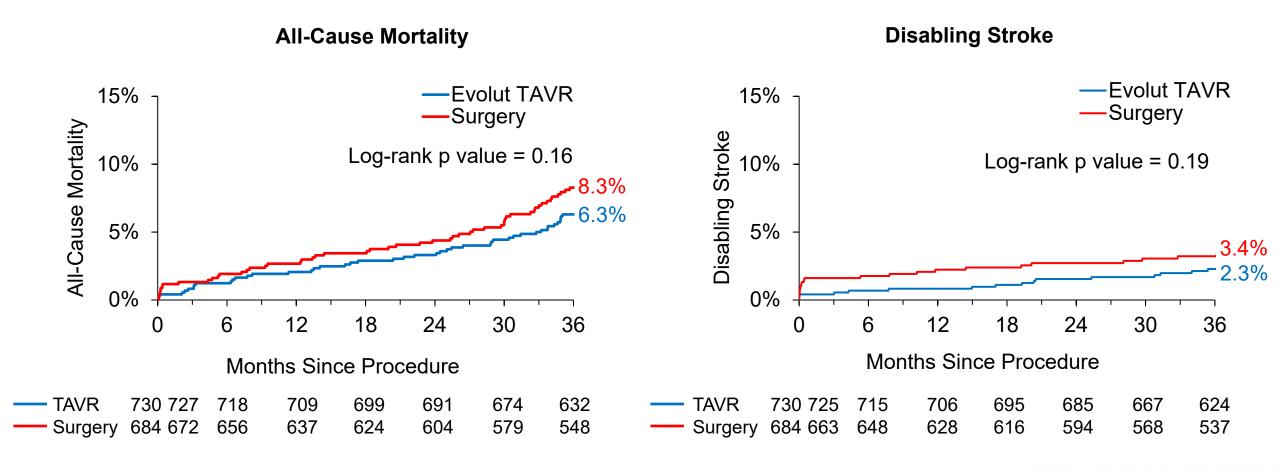
Australia, Canada, Europe, Japan, and New Zealand

Baseline Characteristics


Mean ± SD or %	Evolut TAVR (N = 730)	Surgery (N = 684)
Age	74.1 ± 5.8	73.7 ± 5.9
Female	36.4	34.1
Left ventricular ejection fraction, %	61.7 ± 7.9	61.9 ± 7.7
STS-PROM score, %	2.0 ± 0.7	1.9 ± 0.7
NYHA class III/IV	24.9	28.2
Hypertension	84.8	82.6
Chronic lung disease, COPD	15.1	18.0
Previous CABG	2.5	2.0
Previous PCI	14.1	12.9
Atrial fibrillation/atrial flutter	15.4	14.4
Pre-existing permanent pacemaker or defibrillator	3.3	3.8

No significant differences between treatment groups

Primary Endpoint: All-Cause Mortality or Disabling Stroke



All-Cause Mortality and Disabling Stroke

3-Year Death or Disabling Stroke by Baseline Variables

Variable E	KM rate at 3 years		LD (050/ CI)	P value for
	Evolut TAVR	Surgery	HR (95% CI)	Interaction
Age, years				0.95
< 75	5.7	8.0	0.71 (0.40-1.26)	
≥ 75	9.1	13.0	0.68 (0.43-1.07)	
Sex				0.41
Male	7.8	11.7	0.64 (0.41-0.98)	
Female	6.8	7.8	0.89 (0.46-1.73)	
BMI, kg/m ²			_	0.71
≤ 30	6.6	9.9	0.65 (0.39-1.10)	
> 30	8.2	10.8	0.75 (0.45-1.23)	
STS Score, %			i	0.55
< 2	5.8	9.0	0.62 (0.37-1.06)	
≥ 2	9.4	12.0	0.77 (0.47-1.26)	
NYHA			1	0.71
1/11	6.7	9.7	0.78 (0.41-1.47)	
III/IV	9.7	11.9	0.77 (0.47-1.26)	
Baseline KCCQ			Ī	0.43
≤ 72	8.1	12.7	0.62 (0.38-0.99)	
> 72	6.5	7.8	0.83 (0.47-1.45)	
COPD			į	0.63
No	7.8	10.9	0.89 (0.35-2.25)	
Yes	7.6	8.8	0.83 (0.47-1.45)	
			T 7	
		0	1 10	
		Favors TAVR	Favors Surgery	

Clinical Outcomes Through 3 Years

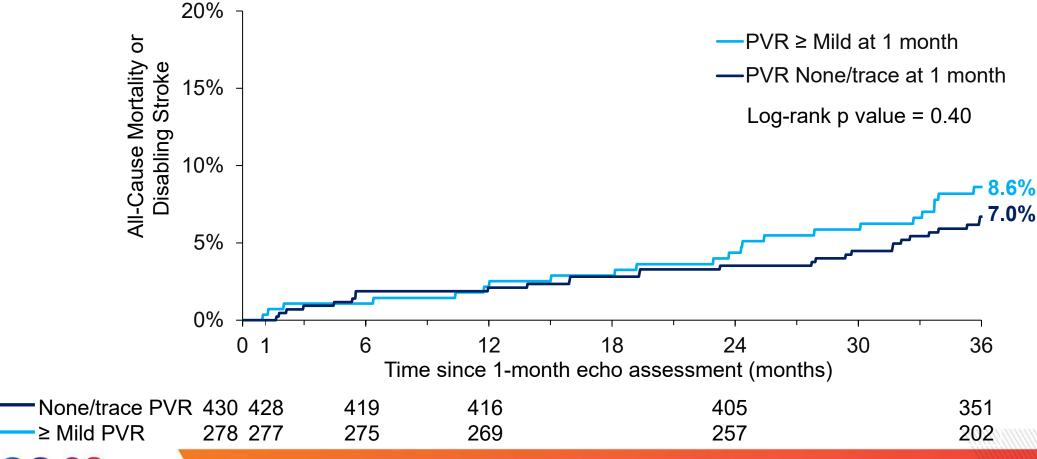
Kaplan-Meier estimate, %	Evolut TAVR (N=730)	Surgery (N=684)	Log-rank P Value
All-cause mortality or disabling stroke	7.4	10.4	0.051
All-cause mortality	6.3	8.3	0.16
Cardiovascular death	4.1	5.6	0.18
All stroke	7.4	6.6	0.55
Disabling stroke	2.3	3.4	0.19
AV hospitalization ^a	7.4	9.2	0.20
All-cause mortality, disabling stroke, or AV hospitalization	13.2	16.8	0.050
Myocardial infarction	3.4	2.3	0.25
Permanent pacemaker implant ^b	23.2	9.1	<0.001
Atrial fibrillation	13.1	40.0	<0.001
Valve endocarditis	0.7	1.3	0.30

^aNot adjudicated by the Clinical Events Committee (CEC). ^bPatients with pacemaker or ICD at baseline are not included. Not adjudicated by the CEC.

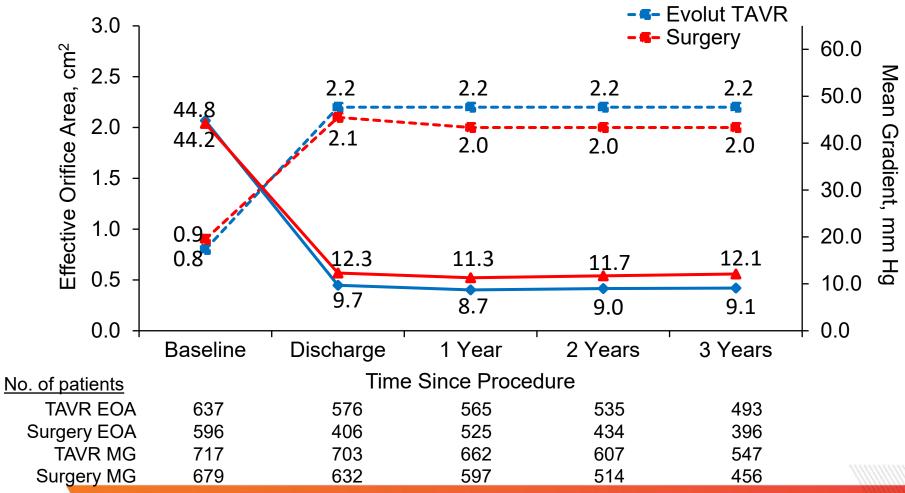
Valve Performance at 3 Years

••	•
Evolut™	
Low Risk	
Trial	
•	

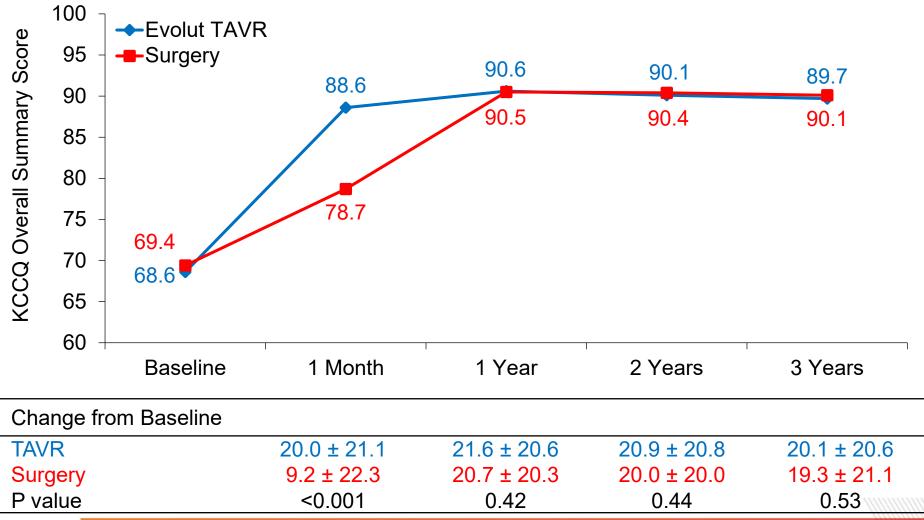
% (n) ^a	Evolut TAVR	Surgery	P Value
Paravalvular regurgitation	N=541	N=447	
None/trace	78.7 (426)	97.3 (435)	
≥ Mild	21.3 (115)	2.7 (12)	<0.001
≥ Moderate	0.9 (5)	0.2 (1)	0.16
Prosthesis-Patient Mismatch (VARC-3)	N=489	N=394	
None	89.4 (437)	74.9 (295)	
Moderate	9.2 (45)	20.3 (80)	
Severe	1.4 (7)	4.8 (19)	0.003
≥ Moderate	10.6 (52)	25.1 (99)	<0.001
Total valve thrombosis	0.7 (5)	0.6 (4)	0.84
Clinical valve thrombosis	0.3 (2)	0.2 (1)	0.61
Subclinical valve thrombosis	0.4 (3)	0.5 (3)	0.91
Reintervention	1.0 (7)	0.9 (6)	0.92


^aPVR and PPM are reported as proportion % (n) and compared by chi-square test, with number of patients with echos at 3 years shown in the top row for each. Reintervention and valve thrombosis are reported as Kaplan-Meier estimate % (n) and compared by log-rank test.

3-Year All-Cause Mortality or Disabling Stroke in the TAVR Cohort by PVR



Valve Hemodynamics to 3 Years


Significantly better MG and EOA with Evolut TAVR at all follow-up timepoints (p < 0.01)

KCCQ Overall Summary Score

Summary

- At 3 years, the rate of all-cause mortality or disabling stroke was 7.4% with TAVR and 10.4% with surgery.
 - The absolute difference between treatment arms remained consistent over time, with a 30% relative reduction in hazard (p = 0.051) for death or disabling stroke.
- TAVR patients continued to have better valve hemodynamics at 3 years.
- Residual paravalvular regurgitation 3 years after TAVR was none/trace in nearly 80% of patients and there was no difference in >mild PVL.
- Rates of new pacemaker implantation were higher after TAVR and the frequency of new onset atrial fibrillation was more common after surgery.

Clinical Implications

- 1. These results provide patients and heart teams important data to aid in the shared decision-making process.
- 2. The excellent valve performance and durable outcomes out to 3 years in low-risk patients affirms the role of TAVR in this population.
- 3. Longer-term data are needed and the potential impact that hemodynamics, valve design, new pacemakers, and other secondary endpoints have on long-term outcomes will be important to follow in this group of low-risk patients.

Manuscript published today in JACC

Three-Year Outcomes After Transcatheter or Surgical Aortic Valve Replacement in Low-Risk Patients

Screen shot of manuscript cover page

Follow the QR code link to the open access article in JACC

Thank you to the patients, physicians, and clinical study teams who made this work possible.

